

SensArray Programming Guide

Version 1.6
June 2019

2 DCN-ST-00001-D 17June2019

Legal Notices

Copyright ©2019 SensThys, Inc. All rights reserved.

SensThys, Inc and/or its affiliated companies have intellectual property rights relating to technology
embodied in the products described in this document, including without limitation certain patents or
patent pending applications in the U.S. or other countries.

This document and the products to which it pertains are distributed under licenses restricting their
use, copying, distribution and decompilation. No part of this product documentation may be
reproduced in any form or by any means without the prior written consent of SensThys, Inc and its
suppliers, if any. Third party software is incorporated into this product, and the creators of that
software. SensThys, SensArray, SensArray+ and other graphics, logos, and service names used in
this document are trademarks of SensThys, Inc and/or its affiliated companies in the U.S. and other
countries. All other trademarks are the property of their respective owners. U.S. Government
approval required when exporting the product described in this documentation.

Federal Acquisitions: Commercial Software -- Government Users Subject to Standard License
Terms and Conditions. U.S. Government: If this Software is being acquired by or on behalf of the
U.S. Government or by a U.S. Government prime contractor or subcontractor (at any tier), then the
Government's rights in the Software and accompanying documentation shall be only as set forth in
this license; this is in accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of
Defense (DoD) acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARANTEES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGMENT ARE
HEREBY DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO
BE LEGALLY INVALID.

FCC NOTICE: This kit is designed to allow:

(1) Product developers to evaluate electronic components, circuitry, or software associated with
the kit to determine whether to incorporate such items in a finished product and

(2) Software developers to write software applications for use with the end product. This kit is not a
finished product and when assembled may not be resold or otherwise marketed unless all required
FCC equipment authorizations are first obtained. Operation is subject to the condition that this
product not cause harmful interference to licensed radio stations and that this product accept
harmful interference. Unless the assembled kit is designed to operate under part 15, part 18 or
part 95 of this chapter, the operator of the kit must operate under the authority of an FCC license
holder or must secure an experimental authorization under part 5 of this chapter.

3 DCN-ST-00001-D 17June2019

4 DCN-ST-00001-D 17June2019

Version 1.5 Revision History

Version Author Date Changes
0.1 Brad Gaiser 2017-10-18 First Draft
1.0 Brad Gaiser 2017-11-17 Updated to reflect various name changes. Cleanup for

initial customer release.
1.1 Brad Gaiser 2018-01-29 • Documented the callback methods and usage for

reporting tag epc data during continuous inventory
cycles that are started and stopped by the methods
StartContinuousRead() and StopContinuousRead.
The changes to support this are in a new overload
for the constructor and an interface for setting the
callback explicitly as well as a more detailed
description of how to use the callback under the
StartContinuousRead() method.

• Added methods to allow the reader to read all the
tag data banks, write to them, lock them and to kill
tags. These are supported by the new methods
ReadTagData(), WriteTagData(), LockTagData(),
and KillTag().

1.2 Brad Gaiser 2018-02-12 • Added helper method SetSessionParameter
• Added methods for getting and setting the Search

Mode (GetSearchMode, SetSearchMode)
• Added methods for getting reader name, type, and

configuration (GetReaderName, GetReaderType,
GetReaderConfig).

1.3 Brad Gaiser 2018-03-27 • Added methods for setting and clearing inventory
filters: SetInventoryFilter() and
ClearInventoryFilter()

• Added methods for getting the region setting of the
reader: GetRegionSetting()

• Provided additional comments to clarify the
functionality of other methods.

1.4 Brad Gaiser 2018-05-?? • Added method for querying which antennas are
connected: GetConnectedAntennas

1.5 Robert Ma 2019-4-19 • Corrected errors in text in Command descriptions
1.5c Robert Ma 2019-6-14 • Added new commands to Appendix B

• Added new Appendix D
• Added new Appendix E: Unsupported Commands

1.6 Robert Ma 2019-6-16 • Added Bluetooth and Wi-Fi- Configuration
Commands

5 DCN-ST-00001-D 17June2019

Contents
Version 1.5 Revision History .. 4

Introduction .. 7
What We Won’t Cover Here .. 7
What Else Is Here? .. 8
Language Support ... 8

Getting Started .. 8

Example 1: Hello World in C# Land ... 9
Creating the new Visual Studio C# project ... 9
Setting up the library reference needed to access the RFID.Reader namespace .. 10
The Code .. 11
Compiling and Testing Your Program ... 13

Example 2: Reading Tags in Multi-Threaded C# Land .. 14
Creating the new Visual Studio C# project ... 14
Setting up the library reference needed to access the RFID.Reader namespace .. 14
The Code .. 14
Compiling and Testing Your Program ... 18

Example 3: Hello World in Binary Protocol Land ... 19
Creating the new Visual Studio C# project ... 19
Setting up the library reference needed to access the RFID.ReaderComm namespace 20
The Code .. 20
Compiling and Testing Your Program ... 23

Appendix A .. 25
Example 1 ... 25
Example 2 ... 26
Example 3 28

Appendix B .. 29
API Interface Guide: RFID.Reader Namespace ... 29

Communications setup and control ... 30
RF Module ID Queries ... 34
RF Setup and Query Methods .. 35
Top-Level Sensor ID Queries ... 45
Networking and Other Sensor-Level Configuration Functions ... 50
Bluetooth and Wi-Fi Configuration Functions ... 57
Configuration Save and Restore .. 60
GPIO and 24V Management Methods ... 63
Continuous Inventory Setup and Control .. 65
Tag Commissioning and Decommissioning ... 72
Error Reporting ... 77

Appendix C .. 79

6 DCN-ST-00001-D 17June2019

Low-Level Communication API Interface Guide: RFID.ReaderComm Namespace 79
Communication Timeout Member Variables .. 80
IP Settings and Socket Setup and Teardown ... 81
Methods for Sending Messages and Receiving Replies ... 82

Appendix D ... 86
Administrative Notification Listener Class API Interface Guide: RFID.Notifications Namespace 86

Appendix E .. 91
Unsupported/Unknown Commands ... 91

7 DCN-ST-00001-D 17June2019

Introduction
This guide is intended to help a first-time programmer writing code to control the SensArray
get over the initial hurdle of communicating with the device. As such, we will present a
couple of simple console applications that communicate with the reader to obtain data and
display it in a console window. We are using a console application as the basis for our sample
code because it keeps the examples simpler than would be the case if we tried to illustrate
the concepts in the context of a graphical user interface.

The first two examples below utilize the Application Program Interface (API) layer code to
do a couple of standard tasks. The first sends a query to the reader to have it return its
current firmware version. From that foundation, we expect that you will be able to send
queries, use the API to set reader and module parameters, and reread those value to confirm
that they were set properly.

The second example utilizing the API illustrates how to typically start and stop a tag
inventory read cycle. This example is more complex because once a read cycle is started, the
reader starts sending a continuous stream of data to your application and will only respond
to the stop command. Because of these constraints, the cleanest way to architect this type of
application is to use a separate thread for reading the tags while the main thread sends the
stop command based on an event. In this example, we will use a timer to read tags for 10
seconds then send the stop command. This, of course, is not the only type of event that could
be used to stop the read cycle (a key press could be used, or a button click in a graphical user
interface could be used, etc.). We chose a timer for this example due to its simplicity.

We have also provided a third example which uses the low-level communications API to send
the raw byte array commands to the reader and to receive the corresponding responses. We
will provide the application that is equivalent to the first example where we request the
SensArray’s firmware ID and display its value in a console window.

What We Won’t Cover Here
The intended audience for this document is the programmer who needs to get a quick start
learning how to use the command-encapsulation API and/or low-level communications API
before writing his or her RFID application. This document is not intended as a tutorial for a
programmer that needs to understand all the ins and outs of how to develop a reliable, robust
application for their end application.

This doesn’t cover programming at the binary protocol level. SensThys offers two additional
documents for binary programming. The first details the higher-level reader commands that
are not handed off to the reader module inside the reader: SensArray Communications
Protocol, Part I. The second documents the binary protocol for communicating directly with
the internal module. This includes commands for setting and getting the read and write
power levels, setting the reader protocols, performing tag reads and writes, and similar
commands. This document is entitled: SensArray Communications Protocol, Part II. Both
documents can be downloaded from the SensThys.com website.

8 DCN-ST-00001-D 17June2019

What Else Is Here?
At the end of this document, you will find five Appendixes:

 Appendix A provides the code for each of the example in text form so that it is easy to
copy and paste the code from this document into the Visual Studio code editor rather
than type it in.

 Appendix B provides detailed documentation of the API that encapsulates (hides) the
binary commands behind more readable function calls.

 Appendix C documents the lower-level communication layer that does the work of
setting up the Ethernet communication socket, packages up the binary data streams,
sends the message to the reader, and finally receives the replies to those messages.

 Appendix D documents a utility class provided by the API for listening for and providing
callbacks for messages that a reader sends out when various reader events occur.

 Appendix E discusses what the API does when a method is called that is not supported
on a specific hardware platform.

Language Support
The versions of the command-encapsulation API and the low-level communications API that
are documented here were written using Microsoft Windows .Net version 3.5. Consequently,
for this version, we support C# and VB.Net. Developing programs in each of these languages
is reasonably straightforward using Visual Studio 2017 as the Integrated Development
Environment (IDE). We understand that you may well have older version of Visual Studio or
other IDEs that you might use for code development, however, in the interest of getting the
first version written and available, we will restrict our discussion and illustrations to Visual
Studio 2017.

One additional comment is in order. We are moving toward providing a broader
development capability than what is currently documented here. We understand that people
may want to develop their applications in other languages – C++, C, Java, Python, and so on.
To support that broader effort, we will first provide COM-enabled versions of these APIs, but
will also provide documentation of basic requirements for communicating with the device
at the socket programming level.

Getting Started
To get started, you need to do a couple of things. The first is to install the libraries (dll’s) that
are discussed in this document. The second is to configure and gain some basic familiarity
with operating the reader.

Both objectives are best achieved by reading through the SensArray User’s Guide. In that
guide, you will find the instructions for installing the SensArray graphical user interface
(GUI). The APIs that are discussed in this document are installed as part of the installation of

9 DCN-ST-00001-D 17June2019

the GUI. The User’s Guide also discusses how to quickly learn to use the GUI to read tags and
work with it to perform some basic configuration and deployment tasks.

Once you have obtained a basic familiarity with the reader, you are ready to move on . . .

Example 1: Hello World in C# Land
In this section, we will create a simple program in C# under Visual Studio 2017. As always,
we will start with the simplest program that does something useful. In this case, we will set
up the reader’s communication information, instantiate the class for communicating with
the reader, and request and print the reader’s firmware revision number.

Creating the new Visual Studio C# project
1. Start Visual Studio
2. Create a new project (File/New/Project…)
3. Select “Window Classic Desktop” under Visual C# on left
4. Select “Console App” in center pane
5. Name the project (RFID_HelloWorld) and specify where you want it to reside
6. Hit OK

10 DCN-ST-00001-D 17June2019

Setting up the library reference needed to access the RFID.Reader namespace
1. Open the Solution Explorer
2. Expand the RFID_HelloWorld line, if needed
3. Right click on the References line and click the “Add Reference . . .” menu item
4. Browse for RFID.dll

If this was installed in its standard location, you will find it under “C:\Program Files
(x86)\SensThys\RFID Console”. If you change to this folder, then search for
RFID.dll, you should find the correct path to this library. Select that path as the path
for the Reference.

11 DCN-ST-00001-D 17June2019

The Code
Again, you should find the file Program.cs under the Solution Explorer for the new project
you just created. If Program.cs is not yet open in an editor window, double click on it to open
it for editing.

Type in (or copy and paste from Appendix A) the following code:

The following are the lines you need to add to the file that was created when you selected
the Console App option:

1. First, add “using RFID.Reader;” as seen at line 2. This simplifies the references to the
RFIDReader class and its methods by specifying you want to use the RFID.Reader
namespace. Note that when you initially create this project, the file Program.cs will

12 DCN-ST-00001-D 17June2019

include several using statements at the very top of the file that are not needed to run
this example. You can leave those if you want or delete all except the using System
statement as shown here.

2. Second, you will be adding lines 10 through 36. This implements the basic
functionality of this simple application. The purpose of the various parts of this
program are described here:
a. A quick look at lines 12 through 36 shows that the entire process is wrapped in a

try/catch/finally statement. In setting up the RFIDReader class and
communicating with the reader, several exceptions can be thrown.
Consequently, robust error management when communicating with the reader
requires that your code captures and handles unexpected problems cleanly.

b. At line 14, we create a new instance of the RFIDReader class passing in the IP
address of the reader that you want to query and its port number. In this
example, the IP address assigned to the controller was 192.168.1.151, and the
TCP port number was not changed from its default value of 5000. If you don’t
know the IP address of the reader you are working with, the easiest way to
determine it is to open the RFID Console application and see what IP address is
being shown in the Reader List window.

c. At line 16, we allocate a string variable to hold the firmware id to be returned by
the reader.

d. At line 18, we call the GetFirmwareId method, passing the firmwareId variable
by reference. Note that all the methods in the RFIDReader that communicate
with the reader have their returned results passed back through the parameter
list, hence the call by reference. If for some reason, the reader finds one or more
of the parameter values to be out of range, that error will be indicated by the
method call returning RFIDStatus.FAILED. If the parameters are error free, the
return value will be RFIDStatus.OK.

e. In lines 20 through 36, we handle the returned results and any errors that might
occur. In this case, the else clause at lines 25 and 26 is not needed because there
are no parameters that might be out of range. We wanted to illustrate how the
status return value might be handled if there was a possible data error.

f. At lines 28-31, we have provided a generic exception handler for the handful of
exceptions that might be raised. The first that might occur is in the instantiation
of the RFIDReader class. In checking to be sure that the IP address is correct, a
System.FormatException would be raised if the IP address was not in the
standard 4-field dotted notation typically used to specify IP addresses. Secondly,
if the wrong IP address is specified, or there is some communication problem
with the reader, a System.TimeoutException will be raised. Other exceptions
related to opening TCP sockets might be raised as well, so it is generally good

13 DCN-ST-00001-D 17June2019

practice to set up an exception handler that can allow your program to continue
properly if something unexpected should arise.

g. Finally, lines 32-35 show how to provide final cleanup of the underlying
communication channel. The Shutdown() method closes the socket and disposes
of any memory or other resources that the socket might hold.

Compiling and Testing Your Program
Now that you have created the code, you need to compile and test it. Under Visual Studio
2017, you do this using the following procedure:

1. Compile the code using the menu item “Build/Build Solution”. This should open an
Output window in the Visual Studio development environment showing the
compiler progress. If the compiler detects any errors in your code, it will open an
Error List window to show you those errors.

2. Correct any errors and recompile using “Build/Build Solution” until your code is
error free.

3. Finally, test your code by using the menu item “Debug/Start Without Debugging” or
by hitting Ctrl+F5. This will open a console window where the printed output from
your program will be displayed and paused waiting for you to “Press any key to
continue . . .”. Once you hit a key, the window will be closed. If you have entered your
IP address and port number correctly, you should see the output shown here:

It is possible that you might see a newer firmware version number, but it should have
the format (V#.#.#) shown.
One note: If you use “Debug/Start Debugging” rather than “Debug/Start Without
Debugging”, the console window will open up and then close without your being
able to see the printed content.

14 DCN-ST-00001-D 17June2019

Example 2: Reading Tags in Multi-Threaded C# Land
In this section, we will create a program in C# under Visual Studio 2017 that will read tags
from the reader. The main problem with reading tags is that once tag reads are started,
issuing the command to stop the read cycle typically would need to happen asynchronously
to the loop where the tags are being read. In a GUI-based application, the tag reads would
happen in a tight loop in a thread outside the main window event handling loop. That way,
the reads can happen as fast as possible without blocking the GUI from handling user input
or displaying content.

In this example, we reverse that process and create a timer which operates in a separate
process so that the main thread can read tags as quickly as possible, but when the timer
elapses, it is able to issue the command to stop the tag reads. Due to networking delays, tag
data may still be queued up, so the read loop continues until the method for reading tag data
indicates that the stop command has been received and the last of the tag data has been sent.

Creating the new Visual Studio C# project
1. Start Visual Studio
2. Create a new project (File/New/Project . . .)
3. Select “Window Classic Desktop” under Visual C# on left
4. Select “Console App” in center pane
5. Name the project (RFID_ReadTags) and specify where you want it to reside
6. Hit OK

Setting up the library reference needed to access the RFID.Reader namespace
1. Open the Solution Explorer
2. Expand the RFID_ReadTags line, if needed
3. Right click on the References line and click the “Add Reference . . .” menu item
4. Browse for RFID.dll

If this was installed in its standard location, you will find it under “C:\Program Files
(x86)\SensThys\RFID Console”. If you change to this folder, then search for
RFID.dll, you should find the correct path to this library. Select that path as the path
for the Reference.

The Code
You should find the file Program.cs under the Solution Explorer for the new project you just
created. If Program.cs is not yet open in an editor window, double click on it to open it for
editing.
Type in the code shown below or copy and paste the code from Example 2 in Appendix A.
You will need to add the using statement at line 3, the declarations at lines 9-11, the
application code at lines 15-78 in Main(), and the callback method StopOnTimerEvent() at
lines 81-85.

15 DCN-ST-00001-D 17June2019

There is one thing that you need to note: If for some reason your program should fail
and exit while in the middle of the read loop, there may be cases where the stop
command is not issued. If that should happen, you will not see the “Continuous read
exiting normally” message and you should probably power cycle your reader to be
sure that the module is reset.

If the stop command is not received by the reader, the module will continue reading tags
indefinitely. If your duty cycle is set too high, the RFID module may start to run excessively
hot, shortening its life.

This example program shows how defensive programming can be applied to handle this
condition. Here, the finally clause of the try/catch block is used to ensure that the timer can
fire off the stop command even if an exception is thrown. However, if you were to kill this
program before it can run to completion, the module could still be left in a running state.

16 DCN-ST-00001-D 17June2019

17 DCN-ST-00001-D 17June2019

The following describes the various sections of code needed to implement this application.
We will not go into detail regarding the exception handling section or the use of the status
return values except for where it is used to stop the tag read loop. A description of the
exception handling and status return handling is described in Examples 1 and 3 in detail.

The following describe the code that you will be adding:

1. At lines 2 and 3, you need to specify the System.Threading namespace for the Timer
that will be created and used to stop the continuous read cycle and the
RFID.RFIDReader namespace for the RFIDReader class and the RFIDStatus return
type. The RFID.RFIDReader namespace is describe in more detail in Example 1 above.

2. In lines 15 through 32, we create an instance of the RFIDReader class and verify
connectivity by reading and printing the firmware id as we did in Example 1.

3. On line 35, we send the command to the controller to start a continuous read cycle by
calling the StartContinuousRead() method.

4. After that, at line 37, we create a timer that will fire off for 10 seconds allowing for 10
seconds of continuous tag reads. Note that the callback that is invoked when the timer
expires is defined at lines 81 through 85. The only thing the callback does is to issue
the stop command to the reader by calling the StopContinuousRead() method for the
controller object created in the main program.

5. Lines 43 through 60 define the main loop for receiving and printing the tag data from
the reader. The tag read data stream is started by a successful call to
StartContinuousRead(). If that call were to fail, the data loop would not be entered.
Note that ReadNextTag(), which is the core method for receiving the tag data returns
RFIDStatus.OK when a tag has been read, and returns RFIDStatus.DONE when the
StopContinuousRead() command has been processed by the reader and the last of the
queued tag data has been received. StopContinuousRead() stops the read cycle
immediately, but there may be tag data that is queued up. The response to the stop
command is queued up after the data for the last tag read, so the read loop can be
exited once RFIDStatus.DONE is finally received.
Note that under some circumstances, ReadNextTag() may encounter a bad read. In
that case, it will return a status of RFIDStatus.FAILED. Lines 47 through 58 show a
simple way to handle all the various return values from the ReadNextTag().

6. The exception handling in this case is very simple, however, as described above, we
use the finally clause to wait for the timer to fire and send the stop command. Note
that we created the timer just prior to sending the StartContinuousRead() command
so that it would be null if an exception was thrown prior to the start read being issued.
In that case, the do/while loop will exit after sleeping for 100 ms and not get stuck
waiting for the stopCommandIssued indicator to change. The finally clause is also
responsible for final cleanup of the timer object and disposing of the controller object.

18 DCN-ST-00001-D 17June2019

Compiling and Testing Your Program
Now that you have created the code, you need to compile and test it. Under Visual Studio
2017, you do this using the following procedure:

1. Compile the code using the menu item “Build/Build Solution”. This should open an
Output window in the Visual Studio development environment showing the
compiler progress. If the compiler detects any errors in your code, it will open an
Error List window to show you those errors.

2. Correct any errors and recompile using “Build/Build Solution” until your code is
error free.

3. Finally, test your code by using the menu item “Debug/Start Without Debugging” or
by hitting Ctrl+F5. This will open a console window where the printed output from
your program will be displayed and paused waiting for you to “Press any key to
continue . . .”. Once you hit a key, the window will be closed. If you have entered your
IP address and port number correctly, you should see output similar to what is
shown here:

19 DCN-ST-00001-D 17June2019

7. It is possible that you might see a newer firmware version number, but it should have
the format (V#.#.#) shown.

One note: If you use “Debug/Start Debugging”, rather than “Debug/Start Without
Debugging”, the console window will open up, then close without your being able to
see the printed content.

Example 3: Hello World in Binary Protocol Land
In this section, we will create a simple program in C# under Visual Studio 2017 that is
completely equivalent to the example in Example 1 above where we request and print the
reader’s firmware ID except that we write the code using the low-level reader binary
protocol.

Creating the new Visual Studio C# project
1. Start Visual Studio

20 DCN-ST-00001-D 17June2019

2. Create a new project (File/New/Project . . .)
3. Select Window Classic Desktop under Visual C# on left
4. Select Console App in center pane
5. Name the project (RFID_HelloWorld2) and specify where you want it to reside
6. Hit OK

Setting up the library reference needed to access the RFID.ReaderComm
namespace

1. Open the Solution Explorer
2. Expand the RFID_HelloWorld2 line, if needed
3. Right click on the References line and click the “Add Reference . . .” menu item
4. Browse for RFID.dll

If this was installed in its standard location, you will find it under “C:\Program Files
(x86)\SensThys\RFID Console”. If you change to this folder, then search for
RFID.dll, you should find the correct path to this library. Select that path as the path
for the Reference.

The Code
You should find the file Program.cs under the Solution Explorer for the new project you just
created. If Program.cs is not yet open in an editor window, double click on it to open it for
editing.
Type in the code highlighted by the green bars below. You will need to add line 2 and lines
10-46.

21 DCN-ST-00001-D 17June2019

You will need to add the following code to the file that was created when you selected the
Console App option:

1. First, add “using RFID.ReaderComm;” as seen at line 2. This simplifies the references
to the RFIDReaderComm class and its methods. Note that when you initially create
this project, the file Program.cs will include several using statements at the very top
of the file that are not needed to run this example. You can leave those if you want or
delete all except the using System statement as shown here.

2. The code in lines 10 through 46 are as follows:

22 DCN-ST-00001-D 17June2019

a. A quick look at lines 12 through 46 shows that the entire process is wrapped in a
try/catch/finally statement. In setting up the connection and communicating
with the reader, several exceptions can be thrown. Consequently, robust error
management handling when communicating with the reader requires that your
code captures and handles unexpected problems cleanly.

b. At line 14, we create a new instance of the RFIDReaderComm class passing in the
IP address of the reader that you want to query and its port number. In this
example, the IP address assigned to the controller was 192.168.1.151, and the
TCP port number was not changed from its default value of 5000. As discussed in
Example 1, if you don’t know the IP address of the reader you are working with,
the easiest way to determine it is to open the RFID Console application and see
what IP address is being shown in the Reader List window.

c. At lines 16 and 17, we create a buffer to hold the output results.
d. At line 18, we define a constant for the command code used to retrieve the

reader’s firmware ID. Note that in this example, the command code is 2, and as
will be seen in the next section, the command itself doesn’t pass in any data. This
is not typically the case, since many of the commands set various configuration
parameters, in which case, data does need to be passed in. For commands that
pass in data, you would pass in the data array and the number of bytes in the
data as the 5th and 6th parameters to the SendMessage() call.

e. At lines 21-24, we call the SendMessage() method of the RFIDReaderComm class.
The first two parameters (lines 21 and 22) pass in the buffer (responseBuffer)
that will receive the actual data returned by the reader and the allocated size of
that buffer (MaxResponseLength). Note that we only expect this command to
return 3 bytes of data, but have allocated 10 bytes. If you were using a common
buffer for all of the calls you need to make to the reader, you can over-allocate
the required space as shown here.

f. On line 23, we pass in a parameter that specifies which of the internal reader’s
subsystems the command will be directed to. If you recall from the discussion in
the section above “What Else Is Here?” there are two primary subsystems in the
reader to which queries and commands can be directed. For this case, we are
interested in the reader’s firmware id (rather than the RFID module’s firmware
id), so we direct the query to the reader by specifying the
ReaderSubsystem.RFID_Controller value for this parameter. (If we were
querying the internal module’s firmware ID, we would use the subsystem
ReaderSubsystem.RFID_Module for this parameter.)

g. Finally, at line 24, we pass in the constant GetReaderFirmwareIdCommand as
the command code for which we are requesting a response.

23 DCN-ST-00001-D 17June2019

h. Note that there are two optional parameters to SendMessage() that would be
used to pass input data to the reader as part of a command. In this case, the
request for the reader’s firmware id doesn’t have any data content (other than
the command code, which is handled through the 3 parameter) we don’t include
these two optional parameters.

i. Lines 26 through 46 handle the data returned from the reader or deal with any
problems that might occur. Strictly speaking, the test and line 26 and the else
clause in lines 32-36 are not needed since there should be no circumstances
where an incorrect byte count will be returned without some other exception
being raised. This was just included to help you understand the various returns
from the call to SendMessage(). The catch clause that is part of the exception
handling is shown at lines 38-41. There are a number of exceptions that might be
raised. The first that might occur is in the instantiation of the RFIDReaderComm
class. In checking to be sure that the IP address is correct, a
System.FormatException would be raised if the IP address was not in the
standard 4-field dotted notation typically used to specify IP addresses. Secondly,
if the wrong IP address is specified, or there is some communication problem
with the reader, a System.TimeoutException will be raised. Other exceptions
related to opening TCP sockets might be raised as well, so it is generally good
practice to set up an exception handler that can allow your program to continue
properly if something unexpected should arise.

j. Lines 42-46 show the final cleanup needed for this class. Since the socket
underlying the connection between your computer and the reader fall outside
the memory handling in .Net, we implemented the Dispose() method to close the
socket and cleanup any memory allocated when using the socket.

Compiling and Testing Your Program
Now that you have created the code, you need to compile and test it. Under Visual Studio
2017, you do this using the following procedure:

1. Compile the code using the menu item “Build/Build Solution”. This should open an
Output window in the Visual Studio development environment showing the
compiler progress. If the compiler detects any errors in your code, it will open an
Error List window to show you those errors.

2. Correct any errors and recompile using “Build/Build Solution” until your code is
error free.

3. Finally, test your code by using the menu item “Debug/Start Without Debugging” or
by hitting Ctrl+F5. This will open a console window where the printed output from
your program will be displayed and paused waiting for you to “Press any key to
continue . . .”. Once you hit a key, the window will be closed. If you have entered your

24 DCN-ST-00001-D 17June2019

IP address and port number correctly, you should see the output shown here:

It is possible that you might see a newer firmware version number, but it should
have the format (V#.#.#) shown.

One note: If you use “Debug/Start Debugging”, rather than “Debug/Start Without
Debugging”, the console window will open up, then close without your being able to
see the printed content.

25 DCN-ST-00001-D 17June2019

Appendix A
This appendix will provide the code listings for the three examples in text form so that it is
easier to copy and paste the code into the Visual Studio editors.

Example 1

using System;
using RFID.Reader;

namespace RFID_HelloWorld
{
 class Program
 {
 static void Main(string[] args)
 {
 RFIDReader reader = null;

 try
 {
 reader = new RFIDReader("192.168.1.151", 5000);

 String firmwareId = "";

 RFIDStatus status = reader.GetFirmwareId(ref firmwareId);

 if (status == RFIDStatus.OK)
 {
 Console.WriteLine("RFID_HelloWorld: GetFirmwareId succeeded.");
 Console.WriteLine("ID = " + firmwareId);
 }
 else
 Console.WriteLine("RFID_HelloWorld: GetFirmwareId failed.");
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 finally
 {
 if (reader != null)
 reader.Shutdown();
 }
 }
 }
}

26 DCN-ST-00001-D 17June2019

Example 2

using System;
using System.Threading;
using RFID.Reader;

namespace RFID_ReadTags
{
 class Program
 {
 static RFIDReader reader = null;
 static Timer tenSecondTimer = null;
 static Boolean stopCommandIssued;

 static void Main(string[] args)
 {
 try
 {
 String firmwareId = "";
 String epc = "";
 Double rssi = 0.0;
 Byte antennaNumber = 0;
 Int32 tagnum = 0;

 // Create/initialize the controller
 reader = new RFIDReader("192.168.1.151", 5000);

 RFIDStatus status = reader.GetFirmwareId(ref firmwareId);

 if (status == RFIDStatus.OK)
 Console.WriteLine("Reading tags for reader with firmware id: " + firmwareId);
 else
 {
 Console.WriteLine("Unable to start the program. Failed to get firmware id from
reader.");
 return;
 }

 // Create the timer
 Timer tenSecondTimer = new Timer(StopOnTimerEvent, reader, 10000, 10000);

 // Issue the command to start reading tags.
 status = reader.StartContinuousRead();

 // Read tags until status == RFIDStatus.DONE
 while (status != RFIDStatus.DONE)
 {
 tagnum++;
 status = reader.ReadNextTag(ref epc, ref rssi, ref antennaNumber);
 switch (status)
 {
 case RFIDStatus.OK:
 Console.WriteLine("Tag #:" + tagnum.ToString() + ", Ant #: " +
 antennaNumber.ToString() + ", EPC: " + epc);
 break;
 case RFIDStatus.FAILED:
 Console.WriteLine("Tag #:" + tagnum.ToString() + " encountered read error.");
 break;
 case RFIDStatus.DONE:
 Console.WriteLine("Continuous read exiting normally.");
 break;
 }
 }

27 DCN-ST-00001-D 17June2019

 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 finally
 {
 do
 {
 System.Threading.Thread.Sleep(100);
 } while (tenSecondTimer != null && !stopCommandIssued);

 if (tenSecondTimer != null)
 tenSecondTimer.Dispose();

 if (reader != null)
 reader.Shutdown();
 }
 }

 static public void StopOnTimerEvent(Object reader)
 {
 ((RFIDReader)reader).StopContinuousRead();
 stopCommandIssued = true;
 }
 }
}

28 DCN-ST-00001-D 17June2019

Example 3

using System;
using RFID.ReaderComm;

namespace RFID_HelloWorld2
{
 class Program
 {
 static void Main(string[] args)
 {
 RFIDReaderComm readerComm = null;

 try
 {
 readerComm = new RFIDReaderComm("192.168.1.151", 5000);

 Int32 MaxResponseLength = 10;
 Byte[] responseBuffer = new Byte[MaxResponseLength];

 const Byte GetReaderFirmwareIdCommand = 0x02;

 Int32 datalength = readerComm.SendMessage(ref responseBuffer,
 MaxResponseLength,
 ReaderSubsystem.RFID_Controller,
 GetReaderFirmwareIdCommand);

 if (datalength == 3)
 {
 Console.WriteLine("RFID_HelloWorld2: Read Firmware ID succeeded.");
 Console.WriteLine(String.Format("ID = V{0}.{1}.{2}",
 responseBuffer[0], responseBuffer[1], responseBuffer[2]));
 }
 else
 {
 Console.WriteLine("RFID_HelloWorld2: Read Firmware ID returned unexpected
datalength.");
 Console.WriteLine("Expected 3 bytes, received " + datalength.ToString() + " bytes.");
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 finally
 {
 if (readerComm != null)
 readerComm.Dispose();
 }
 }
 }
}

29 DCN-ST-00001-D 17June2019

Appendix B
API Interface Guide:

RFID.Reader Namespace

public class RFIDReader
Function:
This class provides a high-level encapsulation of many of the commands that the sensor
responds to for querying and changing the setup of the sensor as well as reading tags.
Additional Information:
A detailed description of how this class is used is described above with examples of how it is
used. The general outline, though, is as follows:
• Instantiate an instance of the class passing in the IP address and the port number:

RFIDReader sctrl = new RFIDReader("192.168.1.150", 5000);

• Call the method that you want to use: RFIDStatus = sctrl.GetModuleHardwareId(ref
hwId);

• Process the result, then repeat for any additional commands that you wish to process.

• Close the connection when finished by calling sctrl.Shutdown();

Note that the underlying communication blocks with relatively long timeouts. Consequently,
this is best used in a multi-threaded environment if these calls are made within the context
of a graphical user interface.
One further comment on the various methods for communicating with the sensor. The
command handler on the sensor does some value and range checking on the parameters that
are being sent to it to change its configuration and to control its operation. Consequently,
many of those commands return a success or failure value. We wanted the methods for
communicating commands and receiving responses from the sensor to have a uniform
structure. To accommodate achieving uniformity, returning a success or failure code, and
communicating complex data we elected to indicate success or failure through the return
value and to return data values from "Get" calls by reference through the parameter list.
The type returned from the query and update commands to the sensor is the enumeration
RFIDStatus with the following three enumerators:
• FAILED: This value is returned when the command failed, typically because bad data

was passed sent to the sensor.

• OK: This value is returned when the command succeeds.

30 DCN-ST-00001-D 17June2019

• DONE: This value is returned when a sequence of calls needs to be made where the
result is typically indicated by OK, but that the final response is indicated by returning
DONE. Currently, the method GetNextTag() is the only interface that returns this value.

In addition to these return values, many of the methods will throw exceptions. Most of the
methods in this API involve sending and receiving Ethernet messages. For a variety of
reasons, there can be delays in the setup of the communication channel or delays in the
actual communication process that result in timeout exceptions being the most common
exception from these methods.
The design philosophy behind this division in the way errors are handled is to let the
operating system and programming type of errors be handled through the exception
handling process while data validation errors are handled through the return codes.

Communications setup and control

constructor RFIDReader(String IPAddress, Uint16 PortNumber,

RFID.Reader.TagReadHandler continuousTagReadHandler)
Function:
This method creates an instance of the RFIDReader class and creates the underlying
communications class while registering a callback that matches the TagReadHandler
interface.
Parameters:

Parameter: IPAddress
Type - String
Description - Input parameter with dotted format IP address (e.g., "192.168.1.150").

Parameter: PortNumber
Type - UInt16
Description - Input parameter with the TCP port that the primary command
communication will take place over.

Parameter: continuousTagReadHandler
Type - delegate void RFID.Reader.TagReadHandler(TagReadInfo tagInfo).

Where TagReadInfo is defined as:

public class TagReadInfo {
public RFIDStatus status;
public Byte antennaNumber;
public String EPC;
public Double RSSI;

public TagReadInfo();

31 DCN-ST-00001-D 17June2019

public void Clear(); // Sets status=OK; other members to 0 or empty
}

Description - This parameter specifies a callback routine that is called each time tag
data is reported during a continuous inventory cycle.

Return Value:
An object instance of the RFIDReader class is returned when a new version of this class is
instantiated.
Exception(s) thrown:
A System.FormatException will be thrown if the IP Address string is not a valid dot notation
IP address.

constructor RFIDReader(String IPAddress, Uint16 PortNumber,

RFID.Reader.TagReadHandler2 continuousTagReadHandler)

Function:
This method creates an instance of the RFIDReader class and creates the underlying
communications class while registering a callback that matches the TagReadHandler2
interface.
Parameters:

Parameter: IPAddress
Type - String
Description - Input parameter with dotted format IP address (e.g., "192.168.1.150").

Parameter: PortNumber
Type - UInt16
Description - Input parameter with the TCP port that the primary command
communication will take place over.

Parameter: continuousTagReadHandler
Type - delegate void RFID.Reader.TagReadHandler2(TagReadInfo tagInfo,

RFIDReader reader)

See the definition of TagReadInfo shown above under the description for the
constructor that accepts a callback of the TagReadHandler delegate type.

Description - This parameter specifies a callback routine that is called each time tag
data is reported during a continuous inventory cycle.

This handler will pass back the RFIDReader object that the callback is registered with
so that the application can determine the specific reader instance corresponding to
the received tag data.

32 DCN-ST-00001-D 17June2019

Return Value:
An object instance of the RFIDReader class is returned when a new version of this class is
instantiated.

Exception(s) thrown:
A System.FormatException will be thrown if the IP Address string is not a valid dot notation
IP address.

constructor RFIDReader(String IPAddress, Uint16 PortNumber)
Function:
This method creates an instance of the RFIDReader class and creates the underlying
communications class. The parameters to this constructor are the same as documented
above, but the callback is set to null. This constructor would be used if the application would
like to call into GetNextTag directly rather than use the callback to have tag read info
delivered to the application, if it would want to defer setting up the callback, or would be
used simply use the reader instance to configure the reader, but will not be used to read tags.
Return Value:
An object instance of the RFIDReader class is returned when a new version of this class is
instantiated.
Exception(s) thrown:
A System.FormatException will be thrown if the IP Address string is not a valid dot notation
IP address.

void SetIPv4CommLink(String IPAddress, Uint16 PortNumber)
Function:
The IP address and port number are passed on to the underlying communication layer which
closes the underlying socket if the IP address and port number don't match the values
already set up.
Parameters:

Parameter: IPAddress
Type - String
Description - Input parameter with dotted format IP address (e.g., "192.168.1.150").

Parameter: PortNumber
Type - UInt16
Description - Input parameter with the TCP port that the primary command
communication will take place over.

33 DCN-ST-00001-D 17June2019

Return Value:
There is no return value from this method.
Exception(s) thrown:
A System.FormatException will be thrown if the IP Address string is not a valid dot notation
IP address.
Additional Information:
This method is used to reset the underlying socket whenever the sensor's network
configuration has changed, or when the application chooses to communicate with a second
sensor without wanting to create a separate instance of the RFIDReader class.

SetTagReadCallback(RFID.Reader.TagReadHandler continuousTagReadHandler)
Function:
This method allows the continuous read callback function to be changed or disabled (by
passing the parameter value as null).
Parameters:

Parameter: continuousTagReadHandler
Type - delegate void RFID.Reader.TagReadHandler(TagReadInfo tagInfo)
The TagReadInfo structure is described under the RFIDReader constructor above.
Description - This parameter specifies the callback routine that is called each time
tag data is reported during a continuous inventory cycle.

Exception(s) thrown:
No exceptions will be thrown by this method.

SetTagReadCallback(RFID.Reader.TagReadHandler2 continuousTagReadHandler)
Function:
This method allows the continuous read callback function to be changed or disabled (by
passing the parameter value as null).
The callback that is registered with this overloaded method will pass a reference to the
reader object with which it is registered back to the client code.
Parameters:

Parameter: continuousTagReadHandler
Type - delegate void RFID.Reader.TagReadHandler2(TagReadInfo tagInfo,
RFIDReader reader)
The TagReadInfo structure is described under the RFIDReader constructor above.

Description - This parameter specifies the callback routine that is called each time
tag data is reported during a continuous inventory cycle.

Exception(s) thrown:
No exceptions will be thrown by this method.

34 DCN-ST-00001-D 17June2019

void Shutdown()
Function:
This method closes down the underlying communications connection.
Return Value:
No value is returned from this method.
Exception(s) thrown:
System.Timeout as well as some socket exceptions may be thrown by this call. In general,
these exceptions can be ignored.
Additional Information:
Once this method is called, that instance of the RFIDReader class will no longer be useable.

RF Module ID Queries

RFIDStatus GetModuleHardwareId(ref String ModuleHwId)
Function:
Returns the RF Module's hardware identifier.
Parameters:

Parameter: ModuleHwId
Type - ref String
Description - The string representation of the module's hardware identifier is
returned to the caller.

Return Value:
This function will return RFIDStatus.OK if it is able to read and return the RF module's
hardware id. It will return RFIDStatus.FAILED otherwise.
Exception(s) thrown:
A System.TimeoutException will be thrown if a connection to the sensor cannot be
established or the module doesn't respond.
Additional Information:
The value returned has the format V#.#.# where the first field (#) is the major version level
of the hardware, the second the minor version level, and the third field contains the revision
number.

RFIDStatus GetModuleFirmwareId(ref String ModuleFwNumber)
Function:
Returns the RF Module's firmware version number.
Parameters:

Parameter: ModuleFwNumber

35 DCN-ST-00001-D 17June2019

Type - ref String
Description - The string representation of the module's firmware version number is
returned to the caller.

Return Value:
This function will return RFIDStatus.OK if it is able to read and return the RF module's
hardware id. It will return RFIDStatus.FAILED otherwise.
Exception(s) thrown:
A System.TimeoutException will be thrown if a connection to the sensor cannot be
established or the module doesn't respond.
Additional Information:
The value returned has the format V#.#.# where the first field (#) is the major version level
of the firmware, the second the minor version level, and the third field contains the
firmware's revision number.

RFIDStatus GetModuleReaderId(ref String ReaderId)
Function:
This function returns the string value corresponding to the reader module's internal serial
number.
Parameters:

Parameter: ReaderId
Type - ref String
Description - The 8-digit reader module's serial number is returned, formatted as a
string.

Return Value:
This function will return RFIDStatus.OK if it is able to read and return the RF module's reader
id. It will return RFIDStatus.FAILED otherwise.
Exception(s) thrown:
A System.TimeoutException will be thrown if a connection to the sensor cannot be
established or the module doesn't respond.

RF Setup and Query Methods

RFIDStatus SetModulePowerSetting(Double ReadPower, Double WritePower)
Function:
This function directly sets the read and write power of the RFIDReader module.
Parameters:

Parameter: ReadPower
Type - Double
Description - The power to be used when reading tags in dBm. Valid range is from 5
to 30.

36 DCN-ST-00001-D 17June2019

Parameter: WritePower

Type - Double
Description - The power to be used when writing tags in dBm. Valid range is from 5
to 30.

Return Value:
This function will return RFIDStatus.OK if it is able to set the RF module's read or write
power level. It will return RFIDStatus.FAILED otherwise. This command will fail if
ReadPower or WritePower is either less than 5 or greater than 30.
Exception(s) thrown:
A System.TimeoutException will be thrown if a connection to the sensor cannot be
established or the module doesn't respond.
Additional Information:
Currently, the AntennaId should be set to 0.

RFIDStatus SetAntennaPowerSetting(UInt32 AntennaId, Double ReadPower, Double WritePower)
Function:
Set the read and write power levels for when the reader is transmitting through the specified
antenna.
Parameters:

Parameter: AntennaId
Type - UInt32
Description - The number of the antenna for which the power is to be set. Range is
from 0 to 3.

Parameter: ReadPower
Type - Double
Description - The read power level in dBm to be set for the specified antenna when
the reader will be reading tags. Must be in the range from 5 to 30 dBm.

Parameter: WritePower
Type - Double
Description - The write power level in dBm to be set for the specified antenna when
the reader will be write information to tags. Must be in the range from 5 to 30 dBm.

Return Value:
This function will return RFIDStatus.OK if it is able to set the read and write power level to
be associated with the specified antenna. It will return RFIDStatus.FAILED otherwise. This
command will fail if the AntennaId is not in the range from 0 to 3. It will also fail if either the
ReadPower or the WritePower is less than 5 or greater than 30.
Exception(s) thrown:

37 DCN-ST-00001-D 17June2019

A System.TimeoutException will be thrown if a connection to the sensor cannot be
established or the module doesn't respond.

RFIDStatus GetModulePowerSetting(ref Double ReadPower, ref Double WritePower)
Function:
Returns the read power and write power levels from the reader module.
Parameters:

Parameter: ReadPower
Type - ref Double
Description - Returned value of the current module's read power level in dBm.

Parameter: WritePower
Type - ref Double
Description - Returned value of the current module's write power level in dBm.

Return Value:
This function will return RFIDStatus.OK if it is able to read the RF module's currently set read
and write power levels. It will return RFIDStatus.FAILED otherwise.
Exception(s) thrown:
A System.TimeoutException will be thrown if a connection to the sensor cannot be
established or the module doesn't respond.
Additional Information:
This command is complementary to the SetModulePowerSetting command. Note that if the
power level has been changed by doing tag inventory reads, the power level is set to the
values established by the SetAntennaPowerSetting commands.

RFIDStatus GetPowerSetting(ref Double[] ReadPower, ref Double[] WritePower)
Function:
Returns the read power and write power level settings in dBm of the internal antenna (index
0) and the three external antennas (indexes 1, 2, and 3)
Parameters:

Parameter: ReadPower
Type - ref Double[]
Description - Four element array returning the read power levels in dBm for each of
the readers antennas.

Parameter: WritePower
Type - ref Double[]
Description - Four element array returning the write power levels in dBm for each of
the readers antennas.

Return Value:

38 DCN-ST-00001-D 17June2019

This function will return RFIDStatus.OK if it is able to read the read and write power levels
for all of the antennas. It will return RFIDStatus.FAILED otherwise.
Exception(s) thrown:
A System.TimeoutException will be thrown if a connection to the sensor cannot be
established or the module doesn't respond.
An System.IndexOutOfRangeException will be thrown if the ReadPower and/or WritePower
arrays do not have space for at least 4 values.
Additional Information:
This method requires that both arrays are at least four elements long even when
interrogating a 2-port device. In that situation, the last 3 elements of each array are set to 0
dBm. Since the valid power range is always greater than 5 dBm, this acts as an indicator of
the number of elements. In the future, the overloaded version with the number of antennas
as an output can be used.

RFIDStatus GetPowerSetting(out int NumberOfAntennas,

ref Double[] ReadPower,
ref Double[] WritePower)

Function:
Returns the read power and write power level settings in dBm of the internal antenna (index
0) and the three external antennas (indexes 1, 2, and 3)
Parameters:

Parameter: NumberOfAntennas
Type – out int
Description - The number of antennas for the reader configuration (2-port vs. 3-port)
is returned by this parameter. It will return 1 for the 2-port readers and 4 for the 3-
port readers.

Parameter: ReadPower
Type - ref Double[]
Description - Array at least “NumberOfAntennas” long returning the read power
levels in dBm for each of the readers antennas.

Parameter: WritePower
Type - ref Double[]
Description - Array at least “NumberOfAntennas” long returning the write power
levels in dBm for each of the readers antennas.

Return Value:
This function will return RFIDStatus.OK if it is able to read the read and write power levels
for all of the antennas. It will return RFIDStatus.FAILED otherwise.
Exception(s) thrown:

39 DCN-ST-00001-D 17June2019

A System.TimeoutException will be thrown if a connection to the sensor cannot be
established or the module doesn't respond.
An System.IndexOutOfRangeException will be thrown if the ReadPower and/or WritePower
arrays do not have space for at least “NumberOfAntennas” values.

RFIDStatus GetGen2Params(ref Byte[] Gen2Params)
Function:
The Gen2Params data array is returned with the various Gen2 parameters filled in.
Parameters:

Parameter: Gen2Params
Type - ref Byte[]
Description – This 8 byte array returns the Gen2 parameter settings for the
RFIDReader module. Also, see the Additional Information below.

Return Value:
This function will return RFIDStatus.OK if it is able to read and return the RF module's Gen2
parameters. It will return RFIDStatus.FAILED otherwise.
Exception(s) thrown:
A System.TimeoutException will be thrown if a connection to the sensor cannot be
established or the module doesn't respond.
An System.IndexOutOfRangeException will be thrown if the Gen2Params array is not at least
8 bytes long.
Additional Information:
This method encapsulates the module command 0x22. See the "SensArray Communications
Protocol, Part II" document for details on how the specific Gen2 parameters are encoded in
Gen2Params data array.

RFIDStatus SetGen2Params(Byte[] Gen2Params)
Function:
The Gen2Params for the RFIDReader module are set to the values specified in the
Gen2Params data structure.
Parameters:

Parameter: Gen2Params
Type – Byte[]
Description - This 8 byte array passes in the Gen2 parameter settings for the
RFIDReader module.

Return Value:
This function will return RFIDStatus.OK if it is able to set the Gen2 parameters. It will return
RFIDStatus.FAILED otherwise. This command will fail if an attempt is made to set values that
are not valid for the specified data fields of the Gen2DataType structure.
Exception(s) thrown:

40 DCN-ST-00001-D 17June2019

A System.TimeoutException will be thrown if a connection to the sensor cannot be
established or the module doesn't respond.
An System.IndexOutOfRangeException will be thrown if the Gen2Params array is not at least
8 bytes long.
Additional Information:
This method encapsulates the module command 0x20. See the "SensArray Communications
Protocol, Part II" document for details on how the specific Gen2 parameters are encoded in
Gen2Params data array.

RFIDStatus SetSessionParameter(Byte SessionParam)
Function:
This method sets the Session Parameter.
Parameters:

Parameter: SessionParam
Type - Byte
Description - This input parameter passes in the value for the session parameter to
be set. The values are 0 through 3 for sessions 0 through 3.

Return Value:
This function will return RFIDStatus.OK if it is able to set the session parameter. It will return
RFIDStatus.FAILED otherwise.
Exception(s) thrown:
A System.TimeoutException will be thrown if the connection to the sensor cannot be
established or the module doesn't respond.
Additional Information:
The session parameter is one component in the underlying byte protocol for setting the Gen2
parameters. This method reads the Gen2 parameters, changes the session bits, then sends
the command to set the Gen2 parameters.

RFIDStatus GetSearchMode(out Byte SearchMode)
Function:
Returns the current search mode for the reader module.
Parameters:

Parameter: SearchMode
Type - out Byte
Description - The return value will be 0 if the dual search mode is active and 1 if single
is active.

Return Value:
This function will return RFIDStatus.OK if it is able to read and return the RF module's search
mode. It will return RFIDStatus.FAILED otherwise.
Exception(s) thrown:

41 DCN-ST-00001-D 17June2019

A System.TimeoutException will be thrown if a connection to the sensor cannot be
established or the module doesn't respond.
Additional Information:
RFIDReader.SearchModeDual and RFIDReader.SearchModeSingle are provided as symbolic
constants to make code using this interface more readable.

RFIDStatus SetSearchMode(Byte SearchMode)
Function:
Set the search mode of the RFID module
Parameters:

Parameter: SearchMode
Type - Byte
Description - This parameter specifies the search mode (0) - dual or (1) - single to be
set.

Return Value:
This function will return RFIDStatus.OK if it is able to set the RF module's search mode. It
will return RFIDStatus.FAILED otherwise. This command will fail if a value other than 0 or 1
is passed in for the parameter.
Exception(s) thrown:
A System.TimeoutException will be thrown if a connection to the sensor cannot be
established or the module doesn't respond.
Additional Information:
RFIDReader.SearchModeDual and RFIDReader.SearchModeSingle are provided as symbolic
constants to make code using this interface more readable.

RFIDStatus GetLinkParams(ref Byte LinkParams)
Function:
The method returns the current Link Parameter setting of the RFIDReader module.
Parameters:

Parameter: LinkParams
Type - ref Byte
Description - The value of the Link Parameter setting will be returned through this
parameter. The values returned will be:

• 0 - DSB_ASK, FM0, 40 kHz

• 1 - PR_ASK, Miller 4, 250 kHz

• 2 - PR_ASK, Miller 4, 300 kHz

• 3 - DSB_ASK, FM0, 400 kHz

42 DCN-ST-00001-D 17June2019

Return Value:
This function will return RFIDStatus.OK if it is able to read and return the RF module's link
parameter. It will return RFIDStatus.FAILED otherwise.
Exception(s) thrown:
A System.TimeoutException will be thrown if a connection to the sensor cannot be
established or the module doesn't respond.
Additional Information:
This method encapsulates the module command 0x54. See the "SensArray Communications
Protocol, Part II" document for more details.

RFIDStatus SetLinkParams(Byte LinkParams)
Function:
The method sets the current Link Parameter setting of the RFIDReader module.
Parameters:

Parameter: LinkParams
Type - Byte
Description - This function sets the link parameters to the following values:

• 0 - DSB_ASK, FM0, 40 kHz

• 1 - PR_ASK, Miller 4, 250 kHz

• 2 - PR_ASK, Miller 4, 300 kHz

• 3 - DSB_ASK, FM0, 400 kHz

Return Value:
This function will return RFIDStatus.OK if it is able to RF module's link parameters. It will
return RFIDStatus.FAILED otherwise. This command will fail if the value passed in is not
between 0 and 3.
Exception(s) thrown:
A System.TimeoutException will be thrown if a connection to the sensor cannot be
established or the module doesn't respond.
Additional Information:
This method encapsulates the module command 0x52. See the "SensArray Communications
Protocol, Part II" document for more details.

RFIDStatus GetRegionSetting(out Byte RegionSetting)
RFIDStatus GetRegionSetting(out String RegionSettingString)
Function:
These methods return the region setting of the reader module. The initial overload returns
a byte value for the region setting. The second overload returns a string representation.
Parameters:

43 DCN-ST-00001-D 17June2019

Parameter: RegionSetting (first overload)
Type – out Byte
Description - Returns the current region setting of the reader module with values as
follows:

• 1 - China (840.5 – 844.5 MHz)
• 2 - China 920.5 – 924.5 MHz)
• 4 – ETSI/Europe
• 8 – FCC/US/Canada/Mexico
• 22 – Korea
• 50 – Japan
• 51 - Australia
• 52 – Brazil
• 53 – Europe
• 54 – India
• 55 – Israel
• 56 - Taiwan
• 50 – Japan
• 22 – Korea
• 70 - Bangladesh
• 71 – Hong Kong
• 72 - Indonesia
• 73 – Malaysia
• 74 – Singapore
• 75 – Thailand
• 76- Vietnam

Parameter: RegionSettingString (second overload)

Type – out String
Description - Returns a string representation of the current region setting of the
reader module.

Return Value:
This function will return RFIDStatus.OK if it is able to read and return the RF module's region
code or region name. It will return RFIDStatus.FAILED otherwise.
Exception(s) thrown:
A System.TimeoutException will be thrown if a connection to the sensor cannot be
established or the module doesn't respond.

RFIDStatus GetModuleTemperature(ref Double ModuleTemperature)
Function:
This method retrieves the internal temperature of the RFIDReader module in degrees C.

44 DCN-ST-00001-D 17June2019

Parameters:
Parameter: ModuleTemperature

Type - ref Double
Description - On return, ModuleTemperature will hold the current internal
temperature of the RFIDReader module in degrees C.

Return Value:
This function will return RFIDStatus.OK if it is able to read and return the internal
temperature of the RFID module. It will return RFIDStatus.FAILED otherwise.
Exception(s) thrown:
A System.TimeoutException will be thrown if a connection to the sensor cannot be
established or the module doesn't respond.

RFIDStatus GetConnectedAntennas(out Int32 AntennaCount, out Boolean[] AntennaIsConnected)
Function:
This method returns queries each of the antenna port of the integrated reader and returns
an array sized appropriately for the reader of boolean (true/false) values indicating whether
each of the port is connected or not.
Parameters:

Parameter: AntennaCount
Type - out Int32
Description - Output specifying the number of antennas ports for the reader. For the
current product offering, this number will be 1 for the 2-port reader and 4 for the 3-
port reader.

Parameter: AntennaIsConnected
Type - out Boolean[]
Description - The parameter returns an array of Boolean values. A "true" value
indicates a reasonably matched antenna is attached. A "false" value indicates that an
antenna is not attached. (However, see the notes below.)

Return Value:
This function will return RFIDStatus.OK if it is able to communicate with the reader and
obtain information about whether an antenna is connected. RFIDStatus.FAILED will be
returned otherwise.
Exception(s) thrown:
A System.TimeoutException will be thrown if a connection to the sensor cannot be
established or the module doesn't respond.
Additional Information:
In addition to the external antenna ports, we return info regarding the internal port.
Generally, the first element in the AntennaIsConnected array will return true.

45 DCN-ST-00001-D 17June2019

We have found that if the antenna is in a place where there is a lot of metal in front of the
antenna resulting in much of the transmitted RF power being reflected back at the antenna,
this method will indicate that the antenna port is not connected even when an antenna is
present.

Top-Level Sensor ID Queries

RFIDStatus GetHardwareId(ref String HardwareId)
Function:
This method retrieves the hardware Major.Minor.Revision number of the sensor.
Parameters:

Parameter: HardwareId
Type - ref String
Description - Output returning the hardware identifier of the sensor.

Return Value:
This function will return RFIDStatus.OK if it is able to read and return the sensor's hardware
version. It will return RFIDStatus.FAILED otherwise.
Exception(s) thrown:
A System.TimeoutException will be thrown if a connection to the sensor cannot be
established or the module doesn't respond.
Additional Information:
The value returned has the format V#.#.# where the first field (#) is the major version level
of the hardware, the second the minor version level, and the third field contains the revision
number.

RFIDStatus GetFirmwareId(ref String FirmwareId)
Function:
This method retrieves the hardware Major.Minor.Revision number of the sensor.
Parameters:

Parameter: FirmwareId
Type - ref String
Description - Output returning the firmware version number of the sensor.

Return Value:
This function will return RFIDStatus.OK if it is able to read and return the sensor's firmware
version. It will return RFIDStatus.FAILED otherwise.
Exception(s) thrown:
A System.TimeoutException will be thrown if a connection to the sensor cannot be
established or the module doesn't respond.
Additional Information:

46 DCN-ST-00001-D 17June2019

The value returned has the format V#.#.# where the first field (#) is the major version level
of the firmware, the second the minor version level, and the third field contains the
firmware's revision number.

RFIDStatus GetSerialNumber(ref String SerialNumber)
Function:
This method retrieves the hardware Major.Minor.Revision number of the sensor.
Parameters:

Parameter: SerialNumber
Type - ref String
Description - Output returning the serial number of the sensor.

Return Value:
This function will return RFIDStatus.OK if it is able to read and return the sensor's serial
number. It will return RFIDStatus.FAILED otherwise.
Exception(s) thrown:
A System.TimeoutException will be thrown if a connection to the sensor cannot be
established or the module doesn't respond.

RFIDStatus GetFirmwareBuild(out String FirmwareBuild)
Function:
This method retrieves the reader firmware's build.
Parameters:

Parameter: FirmwareBuild
Type - out String
Description - Output returning the firmware build number of the reader.

Return Value:
This function will return RFIDStatus.OK if it is able to read and return the sensor's build
version. It will return RFIDStatus.FAILED otherwise.

Exception(s) thrown:
A System.TimeoutException will be thrown if a connection to the sensor cannot be
established.

Additional Information:
The value returned has the format B.YY.MM.DD.RR where YY is the year of the build, MM is
the month, DD is the day or the month, and RR is a sequence number if more than one version
was developed on a given date. Note that initially, the first character of the build number is
the letter "B". This may change for new readers if they have significantly different embedded
firmware.

47 DCN-ST-00001-D 17June2019

RFIDStatus SetReaderDateAndTime(String ReaderDateAndTime)
Function:
Set the real-time clock date and time values of the reader
Parameters:

Parameter: ReaderDateAndTime
Type - String
Description - This parameter provides the date/time to be set in the format: YYYY-
MM-DDThh:mm:ss

Return Value:
This function will return RFIDStatus.OK if it is able to set the sensor's date and time. It will
return RFIDStatus.FAILED otherwise.

Exception(s) thrown:
A System.TimeoutException will be thrown if a connection to the sensor cannot be
established or the module doesn't respond.

RFIDStatus GetReaderDateAndTime(out String ReaderDateAndTime)
Function:
Retrieve the real-time clock date and time values from the reader
Parameters:

Parameter: ReaderDateAndTime
Type - out String
Description - This parameter returns the reader's date and time in the format: YYYY-
MM-DDThh:mm:ss

Return Value:
This function will return RFIDStatus.OK if it is able to get the sensor's current date and
time. It will return RFIDStatus.FAILED otherwise.

Exception(s) thrown:
A System.TimeoutException will be thrown if a connection to the sensor cannot be
established or the module doesn't respond.

48 DCN-ST-00001-D 17June2019

RFIDStatus GetReaderConfig(out RFID.RFIDReader.ReaderConfig ReaderConfiguration)
Function:
Gets the configuration of the reader.

Parameters:

Parameter: ReaderConfiguration
Type - out RFID.RFIDReader.ReaderConfig ReaderConfig {

Byte numberOfAntennas;
Byte numberOfEthernetPorts;
Byte numberOfGPIs;
Byte numberOfGPOs; Boolean hasDCInput;
 }

Description - Output parameter returns the hardware configuration of the reader.

Return Value:
This function will return RFIDStatus.OK if it is able to get the sensor's reader configuration.
It will return RFIDStatus.FAILED otherwise.

Exception(s) thrown:
A System.TimeoutException will be thrown if a connection to the sensor cannot be
established or the module doesn't respond.

49 DCN-ST-00001-D 17June2019

RFIDStatus SetReaderName(String ReaderName)
Function:
Sets the name advertised by the sensor's heartbeat messages.
Parameters:

Parameter: ReaderName
Type - String
Description - Input parameter specifying the name of the reader to be advertised in
the sensor's heartbeat message. The name cannot be longer than 31 characters.

Return Value:
This function will return RFIDStatus.OK if it is able to set the sensor's reader name. It will
return RFIDStatus.FAILED otherwise. This command will fail if the reader name is longer
than 31 characters.
Exception(s) thrown:
A System.TimeoutException will be thrown if a connection to the sensor cannot be
established or the module doesn't respond.

RFIDStatus GetReaderName(out String ReaderName)
Function:
Gets the name advertised by the sensor's heartbeat messages through a direct firmware
query.
Parameters:

Parameter: ReaderName
Type - out String
Description - Output parameter returns the name of the reader that is advertised in
the sensor's heartbeat message.

Return Value:
This function will return RFIDStatus.OK if it is able to get the sensor's reader name. It will
return RFIDStatus.FAILED otherwise.
Exception(s) thrown:
A System.TimeoutException will be thrown if a connection to the sensor cannot be
established or the module doesn't respond.

RFIDStatus GetReaderType(out String ReaderType)
Function:
Gets the reader type advertised by the sensor's heartbeat messages through a direct
firmware query.
Parameters:

Parameter: ReaderType
Type - out String

50 DCN-ST-00001-D 17June2019

Description - Output parameter returns the name of the reader that is advertised in
the sensor's heartbeat message.

Return Value:
This function will return RFIDStatus.OK if it is able to get the sensor's reader type. It will
return RFIDStatus.FAILED otherwise.
Exception(s) thrown:
A System.TimeoutException will be thrown if a connection to the sensor cannot be
established or the module doesn't respond.

Networking and Other Sensor-Level Configuration Functions

RFIDStatus GetIpV4Info(ref Boolean UsingDHCP,

ref Byte[] IPv4Address, ref Byte[] ipv4Netmask,
ref Byte[] ipv4Gateway, ref Byte[] ipv4DNSServer,
ref UInt16 SensorPort)

Function:
This method returns the various parameters comprising the IpV4 network configuration.
Parameters:

Parameter: UsingDHCP
Type - ref Boolean
Description - Output whose value is True if the sensor is getting its IPv4 setup using
DHCP, False if a static IP address has been assigned.

Parameter: IPv4Address, ipv4Netmask, ipv4Gateway, ipv4DNSServer
Type - ref Byte[4]
Description - These four output values contain the IP addresses for the associated
networking parameters. In dotted notation, if the address is of the form a.b.c.d, then
val[0] = a, val[1] = b, val[2] = c, and val[3] = d.

Parameter: SensorPort
Type - ref UInt16
Description - On return, this output contains the value of the TCP port used for
command-level communication with the sensor. takes place over.

Return Value:
This function will return RFIDStatus.OK if it is able to read and return the sensor's IpV4
network configuration. It will return RFIDStatus.FAILED otherwise.
Exception(s) thrown:
A System.TimeoutException will be thrown if a connection to the sensor cannot be
established or the module doesn't respond.

51 DCN-ST-00001-D 17June2019

RFIDStatus SetIpV4Info(Boolean UseDHCP,
Byte[] IPv4Address, Byte[] ipv4Netmask,
Byte[] ipv4Gateway, Byte[] ipv4DNSServer,
UInt16 SensorPort)

Function:
This method is used to set the IpV4 network configuration for the sensor.
Parameters:

Parameter: UseDHCP
Type - Boolean
Description - Input specifying that the sensor should use DHCP for to obtain its
network configuration.

Parameter: IPv4Address, ipv4Netmask, ipv4Gateway, ipv4DNSServer
Type - String
Description - Input values for IpV4 address, the netmask, the gateway's IP address,
and the IP address of the DNS server. These should be a valid dot notation for these
values (a.b.c.d where the 4 fields must fall between 0 and 255).

Parameter: SensorPort
Type - UInt16
Description - Input specifying the port for command-level communication with the
sensor. This value must be between 1024 and 65535.

Return Value:
This function will return RFIDStatus.OK if it is able to set the sensor's IpV4 networking setup.
It will return RFIDStatus.FAILED otherwise. This method will fail if the SensorPort number
is not between 1024 and 65535.
Exception(s) thrown:
• A System.TimeoutException will be thrown if a connection to the sensor cannot be

established or the module doesn't respond.

• A System.FormatException will be thrown if any of the parameters IPv4Address,
ipv4Netmask, ipv4Gateway, or Ipv4DNSServer is not a valid dot notation IP address

Additional Information:
Note that this command will immediately change the network setup, then close and reopen
the command socket. Also, this configuration will not be automatically saved as the startup
configuration of the sensor. Consequently, if the sensor is rebooted before the sensor's
configuration is saved it will restart using the previous sensor setup.

52 DCN-ST-00001-D 17June2019

RFIDStatus GetHeartbeatConfig(ref Byte[] IPv4Address, ref UInt16 PortNumber,
ref UInt32 Interval, ref UInt32 Count)

Function:
This method returns the IP address and UDP port number over which the heartbeat is sent
as well and the Interval between heartbeat messages and the number (Count) of messages
that are sent before the heartbeat goes silent.

Parameters:

Parameter: IPv4Address
Type - ref Byte[]
Description - This output parameter returns with the four bytes that comprise the IP
address over which the heartbeat messages are sent.

Parameter: PortNumber
Type - ref UInt16
Description - Output parameter returning the UDP port number over which the
heartbeat messages are being sent.

Parameter: Interval
Type - ref UInt32
Description - On return this output parameter will hold the time interval in seconds
between heartbeat messages.

Parameter: Count
Type - ref UInt32
Description - On return this output parameter contains the number of counts until
the heartbeat is silenced.

Return Value:
This function will return RFIDStatus.OK if it is able to read and return the heartbeat
configuration. It will return RFIDStatus.FAILED otherwise.
Exception(s) thrown:
A System.TimeoutException will be thrown if a connection to the sensor cannot be
established or the module doesn't respond.

RFIDStatus SetHeartbeatConfig(Byte[] IPv4Address, UInt16 PortNumber,

UInt32 Interval, UInt32 Count)
Function:
This method sets the IP address and UDP port number over which the heartbeat is sent as
well and the Interval between heartbeat messages and the number (Count) of messages that
are sent before the heartbeat goes silent.

53 DCN-ST-00001-D 17June2019

Parameters:

Parameter: IPv4Address
Type - Byte[]
Description - This input parameter passes in the four bytes that comprise the IP
address over which the heartbeat messages are sent. This can be set to
255.255.255.255 for UDP broadcast over the local subnet.

Parameter: PortNumber
Type - UInt16
Description - This input parameter sets the PortNumber over which the UDP
heartbeat messages are sent. The default is 3988 but can be set to any value between
1024 and 65535.

Parameter: Interval
Type - UInt32
Description - The Interval input parameter passes in the number of seconds between
heartbeat messages. This value can be set to 0 to turn the heartbeat off entirely, or
can be set to a long interval to reduce network traffic associated with the heartbeat
messages.

Parameter: Count
Type - UInt32
Description - This value specifies the number of heartbeat messages that are sent
before the heartbeat is no longer being sent. Again, this can be used to reduce network
traffic by turning the messages off after some time period.

Return Value:
This function will return RFIDStatus.OK if it is able to set the heartbeat configuration. It will
return RFIDStatus.FAILED otherwise. This command will fail if the PortNumber is not
between 1024 and 65535.

Exception(s) thrown:
A System.TimeoutException will be thrown if a connection to the sensor cannot be
established or the module doesn't respond.

Additional Information:
The Interval and Count values should be used carefully since it could make device network
discovery difficult. During initial deployment, you may want to leave these at their default
values (Interval=30, Count=0xFFFFFFFF) or even consider reducing the interval to a smaller
value so that you see the heartbeat more often.

54 DCN-ST-00001-D 17June2019

Also, note that this configuration is not saved automatically. Be sure to save the configuration
so that the new values will stay in effect when the sensor is rebooted.

RFIDStatus GetLocatorSignalStatus(ref Boolean LocatorSignalActive)
Function:
This method returns whether or not the locator flash pattern is active on the sensor.

Parameters:

Parameter: LocatorSignalActive
Type - ref Boolean
Description - Output is true when the locator signal is active, false otherwise.

Return Value:
This function will return RFIDStatus.OK if it is able to read and return the reader’s locator
signal status. It will return RFIDStatus.FAILED otherwise.

Exception(s) thrown:
A System.TimeoutException will be thrown if a connection to the sensor cannot be
established or the module doesn't respond.

Additional Information:
The LED on the sensor blinks alternating red and green when the signal locator is on to help
locate a specific sensor.

RFIDStatus SetLocatorSignalStatus(Boolean NewSignalStatus)
Function:
This method activates or deactivates the locator signal on the sensor.

Parameters:

Parameter: NewSignalStatus
Type - Boolean
Description - Input parameter, when true, turns the locator flash pattern on, and
when false, returns the flash pattern to normal operating mode indication.

Return Value:
This function will return RFIDStatus.OK if it is able turn the reader’s locator indicator on or
off. It will return RFIDStatus.FAILED otherwise.
Exception(s) thrown:
A System.TimeoutException will be thrown if a connection to the sensor cannot be
established or the module doesn't respond.
Additional Information:

55 DCN-ST-00001-D 17June2019

The LED on the sensor blinks alternating red and green when the signal locator is on. It
returns to its standard blinking green light when the locator is turned back off.

RFIDStatus GetTempNotificationSetup(ref UInt16 notificationInterval, ref UInt16 alertInterval,

ref Double warningThreshold, ref Double alertThreshold)
Function:
This method returns the time intervals and thresholds for reporting module temperature
during continuous tag read sessions.

Parameters:

Parameter: NotificationInterval
Type - ref UInt16
Description - Output value returning the time interval between UDP notifications of
the temperature of the module.

Parameter: AlertInterval
Type - ref UInt16
Description - Output returning the time interval between times that the sensor checks
the module's temperature to determine whether it is over the warning or the alert
threshold.

Parameter: WarningThreshold
Type - ref Double
Description - Output parameter that returns the current temperature threshold in
degrees C above which a warning notification is sent.

Parameter: AlertThreshold
Type - ref Double
Description - Output parameter that returns the current temperature threshold in
degrees C above which a temperature alert notification is sent.

Return Value:
This function will return RFIDStatus.OK if it is able to read and return the RF module's
temperature notification settings. It will return RFIDStatus.FAILED otherwise.
Exception(s) thrown:
A System.TimeoutException will be thrown if a connection to the sensor cannot be
established or the module doesn't respond.
Additional Information:
See the comments under the SetTempNotificationSetup() method documentation for more
details.

56 DCN-ST-00001-D 17June2019

RFIDStatus SetTempNotificationSetup(UInt16 notificationInterval, UInt16 alertInterval, Double
warningThreshold, Double alertThreshold)
Function:
This method sets the time intervals and thresholds for reporting module temperature during
continuous tag read sessions.

Parameters:

Parameter: NotificationInterval
Type - UInt16
Description - Input value specifying the time interval in seconds between UDP
notifications of the temperature of the module. Setting this value to 0 turns this
notification off.

Parameter: AlertInterval
Type - UInt16
Description - Input specifying the interval in seconds between times that the sensor
checks the module's temperature to determine whether or not it is over the warning
or the alert threshold.

Parameter: WarningThreshold
Type - Double
Description - Input parameter to set the current temperature threshold in degrees C
above which a warning notification is sent.

Parameter: AlertThreshold
Type - Double
Description - Input parameter to set the current temperature threshold in degrees C
above which a temperature alert notification is sent.

Return Value:
This function will return RFIDStatus.OK if it is able to set the reader's temperature
notification parameters. It will return RFIDStatus.FAILED otherwise. This method will fail if
an attempt is made to set the alert interval to less than 10 seconds or the alarm threshold is
set above 85 degrees C.
Exception(s) thrown:
A System.TimeoutException will be thrown if a connection to the sensor cannot be
established or the module doesn't respond.
Additional Information:
There are two types of UDP notifications to port 3984 that are sent from the sensor related
to temperature.

57 DCN-ST-00001-D 17June2019

The first is a periodic notification of the module's temperature at an interval specified by the
NotificationInterval parameter. This can be turned off by setting it to 0. The default for this
interval is 30 seconds.
These notifications are sent when the module exceeds a couple of thresholds. A warning is
issued when the temperature exceeds the value specified by the WarningThreshold
parameter. An alert is issued when the temperature exceeds the value specified by
AlertThreshold. As long as the temperature stays above these values, the warning or the alert
is not resent. However, if the temperature drops at least 2 degrees below these levels, then
rises above them again, the warning or alert is reissued.
The warnings can be turned off by setting the WarningThreshold very high. However, to
protect the module, alerts cannot be turned off and the threshold cannot be set above 85
degrees C.
The default warning threshold is 60 degrees C. The default alert threshold is 85 degrees C.
These thresholds are checked periodically determined by the AlertInterval parameter. The
time interval has a default value of 30 seconds. It cannot be se lower than 10 seconds. If this
value is set to a very long time interval (> 5 minutes) the module may become excessively
hot and will automatically shut down to protect itself.

Bluetooth and Wi-Fi Configuration Functions

RFIDStatus GetWiFiConfiguration(out String SSID)
Function:
This method retrieves the name of the wireless network (SSID) for the Wi-Fi router that the
SensX Extreme reader uses for Wi-Fi connections.
Parameters:

Parameter: SSID
Type - out String
Description - This parameter returns the name of the wireless network the reader
uses to connect to your wireless router. Note that this method will return an empty
string if the SSID has not been set.

Return Value:
This method will return RFIDStatus.OK if the SSID can be retrieved, otherwise, the method
will return RFIDStatus.Failed.
Exception(s) thrown:
A System.TimeoutException will be thrown if the connection to the reader cannot be
established or the reader doesn't respond.

58 DCN-ST-00001-D 17June2019

RFIDStatus GetBluetoothConfiguration(out String Address)
Function:
This method retrieves the address of the Bluetooth device that the reader is configured to
send data to.
Parameters:

Parameter: Address
Type - out String
Description - This parameter returns the Bluetooth device the reader will send data
to. The address returned will be a string formatted as ##:##:##:##:##:## where '#'
represents a hexidecimal digit (0-9,A-F). Note that this method will return an empty
string (length 0) if the Bluetooth address has not been set on your reader.

Return Value:
This method will return RFIDStatus.OK if the Address can be retrieved, otherwise, the
method will return RFIDStatus.Failed.
Exception(s) thrown:
A System.TimeoutException will be thrown if the connection to the reader cannot be
established or the reader doesn't respond.

RFIDStatus SetWiFiConfiguration(String SSID, String Passcode)
Function:
This method configures the Wi-Fi parameters in the SensX Extreme readers to enable
connections to a Wi-Fi router. The name of the wireless network (SSID) and the password
(Passcode) needed to access that network are required for the reader to communicate on
that wireless network. The SensX reader requires the wireless router to support
WPA2_Personal_AES security settings.
Parameters:

Parameter: SSID
Type - String
Description - This parameter is used to specify the name of the wireless network as
is typically broadcast by your wireless router.

Parameters:
Parameter: Passcode

Type - String
Description - This parameter is required to allow the reader to provide the password
or passphrase to the wireless router to allow it onto the wireless network.

Return Value:

59 DCN-ST-00001-D 17June2019

This method will return RFIDStatus.OK if the SSID and Passcode are not empty strings. If one
or the other of these parameters is an empty String, the method will return
RFIDStatus.Failed.
Exception(s) thrown:
A System.TimeoutException will be thrown if the connection to the reader cannot be
established or the reader doesn't respond.

RFIDStatus SetBluetoothConfiguration(String Address, String PairingCode)
Function:
This method configures the reader to establish a connection with a specific Bluetooth
enabled device such as a Smart Phone, a tablet computer, etc. This communication is enabled
by providing the reader with the address and the pairing code of the device that the reader
will pair with and subsequently communicate with.
Parameters:

Parameter: Address
Type - String
Description - This parameter specifies the Bluetooth Address of the device that will
be paired with the reader. The Address must be a string in the form
##:##:##:##:##:## where each pair of ## fields specifies a hexadecimal value. An
example of this might be 11:22:34:56:78:90. Note that there are 6 fields separated by
the colon ':' character. This method requires that each # character be one of the values
0-9 or A-F. Also, leading zeros must be provided -- e.g., 01:02:03:04:05:06 cannot be
shortened to 1:2:3:4:5:6.

Parameter: PairingCode
Type - String
Description - The PairingCode is the security code required by the device that the
reader will pair with. This code must be passed by the reader to the Bluetooth-
enabled device to provide the credentials that allow the Bluetooth device to know
that the reader is authorized to connect. Note that this can be a UTF-8 encoded string.

Return Value:
This method will return RFIDStatus.OK if the Address and PairingCode are properly
formatted as specified in the parameter descriptions above. If either of these parameters is
not properly formatted, this method will return RFIDStatus.Failed.
Exception(s) thrown:
A System.TimeoutException will be thrown if the connection to the reader cannot be
established or the reader doesn't respond.

60 DCN-ST-00001-D 17June2019

Configuration Save and Restore

RFIDStatus SaveCurrentConfiguration()
Function:
This method saves the various configurable sensor settings to flash memory so that they will
be active when the sensor reboots.

Return Value:
This function will return RFIDStatus.OK if it is able to save the settings. It will return
RFIDStatus.FAILED otherwise.

Exception(s) thrown:
A System.TimeoutException will be thrown if a connection to the sensor cannot be
established or the module doesn't respond.

Additional Information:
The configuration information saved includes:
• The Reader Name
• Networking parameters
• Heartbeat parameters
• Antenna Power values
• Antenna Sequencing setup
• Temperature Management parameters

RFIDStatus RestoreSavedConfiguration()
Function:
This method sends a request to the sensor to restore the saved configuration values that are
stored in flash memory.

Return Value:
This function will return RFIDStatus.OK if it is able to read and restore the reader’s saved
configuration. It will return RFIDStatus.FAILED otherwise.

Exception(s) thrown:
A System.TimeoutException will be thrown if a connection to the sensor cannot be
established or the module doesn't respond.

Additional Information:
This command restores the configuration information documented under the comments
section of the SaveCurrentConfiguration() method. Note that the sensor does not check
whether the networking parameters are reset. Consequently, the sensor shuts down the TCP

61 DCN-ST-00001-D 17June2019

communication socket and reopens it to wait for new commands. The underlying
communications layer for this API handles this situation and also works to reestablish
communication. Your application layer, however, will need to provide the IP address and
port number to reestablish this communication link if these values are different between the
saved configuration and the setup prior to calling this method.
The primary purpose of this command is to allow you to experiment with different
configurations, then elect to restore the last saved configuration if things don't behave the
way you want. (This can also be achieved by rebooting or power-cycling the sensor.)

RFIDStatus ResetToDefaultConfiguration()
Function:
This resets the various sensor configuration parameters back to their default values, then
restarts the TCP/IP stack.

Return Value:
This function will return RFIDStatus.OK if it is able to reset the reader’s configuration . It will
return RFIDStatus.FAILED otherwise.

Exception(s) thrown:
A System.TimeoutException will be thrown if a connection to the sensor cannot be
established or the module doesn't respond.

Additional Information:
This command restores the configuration information documented under the comments
section of the SaveCurrentConfiguration() method back to its factory defaults. Once the
defaults have been restored and the sensor acknowledges having received the command, it
shuts down the TCP communication socket and reopens it to wait for new commands. Your
application layer will need to provide the IP address and port number to reestablish to this
class so that it can attempt to open communication on the right IP address and port.

RFIDStatus Reboot()
Function:
This method issues the reboot command to the sensor.

Return Value:
This function always returns RFIDStatus.OK.

Exception(s) thrown:
A System.TimeoutException will be thrown if a connection to the sensor cannot be
established or the module doesn't respond.

Additional Information:

62 DCN-ST-00001-D 17June2019

Note that as long as the sensor receives the command issued by this method, it will reboot
immediately without sending a response. This method will close the underlying socket.
Consequently, it is the responsibility of the application to provide the correct IP address and
port number to this class if the saved configuration is different from the current setup.

RFIDStatus GetBootloaderInfo(ref UInt16 bootloaderPort)

RFIDStatus GetBootloaderInfo(out UInt16 bootloaderPort,

out int versionMajor, out int versionMinor)

Function:
These methods return the Ethernet port over which firmware updates are performed. The
second interface also returns the major and minor version numbers of the underlying
bootloader code. If your application simply needs to know what port is configured for
communicating with the bootloader, use the first call.

Parameters:

Parameter: bootloaderPort
Type - out Uint16
Description - This parameter returns the UDP Ethernet port over which the
application firmware is communicated to the reader.

Parameter: versionMajor, versionMinor
Type - out int, out int
Description - These return the major and minor version numbers of the installed
bootloader.

Return Value:
This function will return CommandStatus.OK if it is able to read and return the bootloader
Ethernet communication port and the version information. It will return
CommandStatus.FAILED otherwise.

Exception(s) thrown:
A System.TimeoutException will be thrown if the connection to the sensor cannot be
established or the module doesn't respond.

63 DCN-ST-00001-D 17June2019

GPIO and 24V Management Methods

RFIDStatus GetGPIOSetup(ref Byte GPIOSetup)
Function:
This method returns the settings for the general-purpose outputs and the detected state of
the general-purpose inputs
Parameters:

Parameter: GPIOSetup
Type - ref Byte
Description - This output parameter returns the settings of the general-purpose
inputs and outputs. The 8 bits of the value are [i4, i3, i2, i1, o4, o3, o2, o1]. A 1 for the
input values indicating a high voltage level (between 5 and 24 volts) and a 0 indicating
a level below 3 volts. A 1 for an output bit indicates that the output has been turned
on, and a 0 indicates it is off.

Return Value:
This function will return RFIDStatus.OK if it is able to read and return the GPIO setting. It will
return RFIDStatus.FAILED otherwise.
Exception(s) thrown:
A System.TimeoutException will be thrown if the connection to the sensor cannot be
established or the module doesn't respond.

RFIDStatus SetGeneralPurposeOutputs(Byte NewGPOs)
Function:
This method sets the settings for the general-purpose outputs and the detected state of the
general-purpose inputs
Parameters:

Parameter: NewGPOs
Type - Byte
Description - This input parameter is sent to the sensor to turn the general-purpose
outputs on or off. The 8 bits of the value are [0, 0, 0, 0, o4, o3, o2, o1]. A 1 turns the
output on, and a 0 turns it off.

Return Value:
This function will return RFIDStatus.OK if it is able to set the new output values. It will return
RFIDStatus.FAILED otherwise. This command will fail if the 4 most significant bits are not
set to 0.
Exception(s) thrown:
A System.TimeoutException will be thrown if the connection to the sensor cannot be
established or the module doesn't respond.

64 DCN-ST-00001-D 17June2019

__
RFIDStatus Get24VStatus(ref Boolean V24State, ref Boolean V24OnAtStartup)
Function:
This method returns the current setup of the 24V DC output on the GPIO connector as well
as what its state is when the sensor is started or restarted. Not applicable for Extreme model.
Parameters:

Parameter: V24State
Type - ref Boolean
Description - This output parameter is true if the 24VDC power is turned on, and false
when it is turned off.

Parameter: V24OnAtStartup
Type - ref Boolean
Description - This output parameter is true if the 24VDC is automatically turned on
when the sensor is started or restarted and false if it is off at startup.

Return Value:
This function will return RFIDStatus.OK if it is able to set the status of the 24V DC power
supply. It will return RFIDStatus.FAILED otherwise.
Exception(s) thrown:
A System.TimeoutException will be thrown if the connection to the sensor cannot be
established or the module doesn't respond.

RFIDStatus Set24VStatus(Boolean V24Active, Boolean V24ActiveOnStartup)
Function:
This method turns the 24VDC on or off and sets the configuration that determines whether
it is on or off on startup. Not applicable for Extreme model.
Parameters:

Parameter: V24Active
Type - Boolean
Description - This input parameter turns the 24VDC power on when true and off
when false.

Parameter: V24ActiveOnStartup
Type - Boolean
Description - This input parameter determines whether the 24VDC power is on (true)
when the sensor is restarted, or off (false).

Return Value:
This function will return RFIDStatus.OK if it is able to change to the new setup for the 24VDC.
It will return RFIDStatus.FAILED otherwise.

65 DCN-ST-00001-D 17June2019

Exception(s) thrown:
A System.TimeoutException will be thrown if the connection to the sensor cannot be
established or the module doesn't respond.
Additional Information:
The initial configuration of the 24VDC is set via V24ActiveOnStartup. However, as with any
configuration item that is part of the startup process, the method
SaveCurrentConfiguration() method needs to be called for it to be in effect when the reader
is booted.

Continuous Inventory Setup and Control

RFIDStatus GetReadGapTimes(ref UInt16 ReadTime, ref UInt16 GapTime)
Function:
This command retrieves the current read time interval and the time interval between read
cycles.
Parameters:

Parameter: ReadTime
Type - ref UInt16
Description - Output parameter containing the time interval in seconds for which a
inventory read cycle is performed for each antenna driven by the reader.

Parameter: GapTime
Type - ref UInt16
Description - Output parameter containing the time interval in milliseconds for the
time period between inventory read cycles.

Return Value:
This function always RFIDStatus.OK.
Exception(s) thrown:
A System.TimeoutException will be thrown if the connection to the sensor cannot be
established or the module doesn't respond.

RFIDStatus SetReadGapTimes(UInt16 ReadTime, UInt16 GapTime)
Function:
This method sets the time interval for an inventory read cycle and the time interval between
reads.
Parameters:

Parameter: ReadTime
Type - UInt16

66 DCN-ST-00001-D 17June2019

Description - Input parameter setting the time interval in milliseconds for which the
reader will perform an inventory cycle for the current antenna.

Parameter: GapTime
Type - UInt16
Description - Input parameter setting the time interval in milliseconds between
inventory read cycles.

Return Value:
This function will return RFIDStatus.OK if it is able to set the read time and the gap time of
the sensor. It will return RFIDStatus.FAILED otherwise. This command will fail if an attempt
is made to set the GapTime to less than 10 ms.
Exception(s) thrown:
A System.TimeoutException will be thrown if the connection to the sensor cannot be
established or the module doesn't respond.
Additional Information:
The read time is the time interval for reading tags for each antenna in the antenna sequence.
The gap time is the time interval between read cycles where the reader switches to the next
antenna in the sequence, sets up the read power level for driving that particular antenna as
well as doing a bit of housekeeping. The minimum time interval allotted for these to complete
is 10 ms, hence the minimum value validation for the gap time.
Note that the read and gap times establish a duty cycle for the operation of the RF module.
Since the module can overheat when run continuously, we encourage you to either monitor
the module's temperature carefully during high duty cycle operation, or set the duty cycle
up to allow for extended operation under your ambient temperature conditions.
More information about selecting appropriate read and gap times based on ambient
temperature can be found in the SensThys white paper "Thermal Performance of the
SensArray".

RFIDStatus GetReadSequence(ref Byte[] AntennaSequence, ref Byte SequenceLength)
Function:
This method retrieves the sequence of antennas that the reader loops through when
performing a continuous tag inventory read cycle.
Parameters:

Parameter: AntennaSequence
Type - ref Byte[]
Description - This output parameter returns an array of antenna numbers reflecting
the sequence of antennas that the reader will cycle through during a continuous
inventory read cycle.

Parameter: SequenceLength
Type - Byte

67 DCN-ST-00001-D 17June2019

Description - Output value indicating the number of items in the antenna sequence.

Return Value:
This function will return RFIDStatus.OK if it is able to read and return the RF module's
hardware id. It will return RFIDStatus.FAILED otherwise.
Exception(s) thrown:
A System.TimeoutException will be thrown if the connection to the sensor cannot be
established or the module doesn't respond.
Additional Information:
Note that the antenna sequence can have repeats. For example, the sequence [0, 0, 1, 0, 1, 1]
(with SequenceLength 6) would read antenna 0 for 2 cycles, then alternate between antenna
1 and antenna 0 for one cycle each, then read antenna 1 for 2 consecutive cycles before
looping back and repeating the entire sequence.
The purpose of this is to allow for effectively longer read periods on some antennas than on
others due to tag density or other factors that might effect read accuracy.

RFIDStatus SetReadSequence(Byte[] AntennaSequence, Byte SequenceLength)
Function:
This method sets the sequence of antennas that the reader loops through when performing
a continuous tag inventory read cycle.
Parameters:

Parameter: AntennaSequence
Type - Byte[]
Description - This input parameter is used to pass an array of antenna numbers to the
reader to set the sequence of antennas that it will cycle through during a continuous
inventory read cycle.

Parameter: SequenceLength
Type - Byte
Description - Input value indicating the number of items in the antenna sequence.

Return Value:
This function will return RFIDStatus.OK if it is able to set the reader's antenna sequence. It
will return RFIDStatus.FAILED otherwise. This command will fail if the antenna numbers in
the sequence fall outside the range from 0 to 3. Also, the maximum number of antennas is
16, this method will fail if SequenceLength is greater than 16.
Exception(s) thrown:
• A System.IndexOutOfRangeException will be thrown if the SequenceLength is larger

than the number of elements the AntennaSequence array.

• A System.TimeoutException will be thrown if the connection to the sensor cannot be
established or the module doesn't respond.

68 DCN-ST-00001-D 17June2019

Additional Information:
Note that the antenna sequence can have repeats. For example, the sequence [0, 0, 1] (with
SequenceLength 3) would read antenna 0 for 2 cycles, read antenna 1, then loop back
repeating the entire sequence. This would effectively give antenna 0 twice as much air time
as antenna 1.
The purpose of this is to allow for effectively longer read periods on some antennas than on
others due to tag density or other factors that might affect read accuracy.

RFIDStatus SetInventoryFilter(Byte maskBank,

UInt16 maskStartBitAddress,
UInt16 maskBitLength,
Byte[] mask,
Boolean makePersistent)

Function:
This method sets the filter to be used during tag inventory cycles.
Parameters:

Parameter: maskBank, maskStartBitAddress, maskBitLength, mask
Type - UInt8, UInt16, UInt16, Byte[]
Description - These 4 fields specify a mask for filtering which tags to read. The
maskBank specifies the data bank to filter on (1 = EPC data, 2 = Tag Identifier data, or
3 = User data). The starting bit position within the data bank that the filter begins
from is specified by maskStartBitAddress, the length of the mask in bits is specified
by maskBitLength, and the actual mask data is specified by the mask parameter.
As an example, if you wanted to mask based on the TID of a tag with TID value
E20034140117010112DD127E, maskBank = 2, maskStartBit = 0, maskBitLength =
96 (12 bytes * 8 bits/byte) and mask = [E2, 00, 34, 14, 01, 17, 01, 01, 12, DD, 12, 7E].

Parameter: makePersistent
Type - Boolean
Description - This parameter specifies whether this filter should be saved to the
module's flash memory so that it will continue to be active even when the module
reboots.

Return Value:
This function will return RFIDStatus.OK if it is able to set the filter. It will return
RFIDStatus.FAILED otherwise.
Exception(s) thrown:
A System.TimeoutException will be thrown if the connection to the sensor cannot be
established or the module doesn't respond.
Additional Information:

69 DCN-ST-00001-D 17June2019

Inventory filters can be cleared by calling SetInventoryFilter(0, 0, 0, null, makePersistent).
We have also provided the method ClearInventoryFilter(makePersistent) as a convenience
wrapper for this.

RFIDStatus ClearInventoryFilter(Boolean makePersistent)
Function:
This method clears the filter used during tag inventory cycles.
Parameters:

Parameter: makePersistent
Type - Boolean
Description - This parameter specifies whether any filter saved in the module should
be permanently cleared. If set to false, the next time the module reboots, the prior
saved filter will become active again.

Return Value:
This function will return RFIDStatus.OK if it is able to clear the filter. It will return
RFIDStatus.FAILED otherwise.
Exception(s) thrown:
A System.TimeoutException will be thrown if the connection to the sensor cannot be
established or the module doesn't respond.
Additional Information:
This is a convenience method that simply calls SetInventoryFilter(0, 0, 0, null,
makePersistent).

RFIDStatus StartContinuousRead()
Function:
This method starts a continuous tag inventory session. This session continues until the
StopContinuousRead() command is received. The “Additional Information” section below
describes in more detail how to use these calls.
Return Value:
This function always returns RFIDStatus.OK.
Exception(s) thrown:
A System.TimeoutException will be thrown if the initial connection to the sensor cannot be
established.
Additional Information:
This method along with ReadNextTag() – or your registered callback – and
StopContinuousRead() form a set of commands for performing a continuous tag inventory
read cycle. During a continuous read cycle, the reader automatically cycles through the
antenna sequence as described in the comments sections of the SetReadGapTimes() and
SetAntennaSequence() commands above.
There are two ways to use these commands to perform the inventory cycle:

70 DCN-ST-00001-D 17June2019

• The first way to use these commands is to register a callback method with the
RFIDReader class, either through the class constructor, or through the
SetTagReadCallback() method. The callback interface is documented in the
constructor section above. Whenever a callback is registered, StartContinuousRead()
starts a background thread to read the tag data continuing until the
StopContinuousRead() command is sent. Due to network and process latency, when
StopContinuousRead() is sent from your application, the background thread
continues to read tags until the response to the StopContinuousRead() command is
received. At that point, the status data member of the TagReadInfo structure passed
back as the callback parameter is set to RFIDStatus.DONE and the background thread
stops reading tags.

• The second way to use these commands is to issue StartContinuousRead(), then
invoke ReadNextTag() in a loop until the return value from the method call is
RFIDStatus.DONE. RFIDStatus.DONE is issued from ReadNextTag() when it receives
the response to the StopContinuousRead() command rather than tag data. Note that
due to network latency and other factors, a number of tags may be read after the stop
command is issued. Because ReadNextTag() blocks indefinitely waiting for tag data
to be returned, StopContinuousRead() must be issued from a separate thread.
Typically, a thread would be created to run the ReadNextTag() loop, and the
StopContinousRead() command can then be issued from the primary thread.

In either scenario, once the StartContinuousRead() method is invoked, the only command
that should be sent to the sensor is StopContinuousRead(). ReadNextTag() can be called to
listen for the data from the next tag read to be passed back. Otherwise, any other command
can result in the sensor locking up and leaving the module in a continuous read state,
potentially damaging the reader.

RFIDStatus ReadNextTag(ref String EPC, ref Double RSSI, ref Byte AntennaNumber)
Function:
Summary
Parameters:

Parameter: EPC
Type - ref String
Description - This output parameter returns the EPC for the first tag read after the
continuous read cycle is started.

Parameter: RSSI
Type - ref Double
Description - RSSI is an output parameter returning the detected RSSI in dBm for the
tag that was read.

Return Value:

71 DCN-ST-00001-D 17June2019

This method returns RFIDStatus.DONE when the response from StopContinuousRead() has
been received. This function will generally return RFIDStatus.OK. RFIDStatus.FAILED will be
returned if malformed data is read.
Exception(s) thrown:
Generally, no exceptions will be thrown for this call. As always, it is good practice to put this
in a try/catch block to handle unusual situations that might crop up and cause your
application to crash if not caught.
Additional Information:
See the discussion under the Additional Information section for the StartContinuousRead()
method for how to perform a continuous tag inventory cycle.
Note that this command blocks waiting for the next tag to be returned. Because of this, the
only way to stop the continuous read cycle is to call the StopContinousRead() from a separate
thread.

RFIDStatus StopContinuousRead()
Function:
This method is called to stop a continuous read cycle started by the StartContinuousRead()
method.
Return Value:
This always returns RFIDStatus.OK.
Exception(s) thrown:
A System.TimeoutException will be thrown if the connection to the sensor has been lost and
cannot be reestablished in a timely manner.
Additional Information:
See the discussions under the Additional Information sections of the StartContinuousRead()
method and ReadNextTag() method above.

RFIDStatus ResetReceiveTimeout()
Function:
This is a cleanup command that needs to be called after a continuous read cycle has been
stopped. StartContinuousRead() sets the receive timeout to be infinite so that the
ReadNextTag() call will block waiting for the next tag data to be sent.
Return Value:
This function always returns RFIDStatus.OK.
Exception(s) thrown:
No exceptions will be thrown.

RFIDStatus ReadTag(ref String EPC, ref Double RSSI, ref Byte AntennaNumber)
Function:
This method requests a single inventory read cycle returning any detected tag.

72 DCN-ST-00001-D 17June2019

Parameters:
Parameter: EPC

Type - ref String
Description - Output parameter returning the EPC code for the tag read.

Parameter: RSSI
Type - ref Double
Description - This output parameter returns the RSSI value of the read tag in dBm.

Parameter: AntennaNumber
Type - ref Byte
Description - Output parameter returning the antenna number that was energized
during the tag inventory cycle.

Return Value:
This function will return RFIDStatus.OK if it is able to read a tag. It will return
RFIDStatus.FAILED otherwise.
Exception(s) thrown:
A System.TimeoutException will be thrown if the connection to the sensor cannot be
established or the module doesn't respond.
Additional Information:
This command will return "No Data" in the EPC field if it returns without reading a tag. It will
return "Bad Data" if the data read is corrupted.

Tag Commissioning and Decommissioning

RFIDStatus ReadTagData(UInt32 accessPassword,

Byte maskBank, UInt16 maskStartBit, UInt16 maskBitLength, Byte[] mask,
Byte dataBank, UInt16 dataStartWord, UInt16 dataWordLength, ref UInt16[]
data,
out Byte errorCode)

Function:
This method reads the tag data from the specified tag data bank: 0 = Reserved data, 1 = EPC
data, 2 = Tag Identifier Data (TID), 3 = User data. The tags read are filtered using the mask
data against the location specified by the maskBank, maskStartBit (offset into bank in
number of bits) with length specified by maskBitLength number of bits. DataWordLength
number of words will be read from the bank specified by the dataBank parameter starting at
offset dataStartWord words.
Parameters:

Parameter: accessPassword

73 DCN-ST-00001-D 17June2019

Type - UInt32
Description - This specifies the password needed when reading the tag data. In
general, specifying a non-zero value is only needed when the access password and kill
password have been locked. For all other data banks and to read the passwords when
they are not locked, either 0 or the value that matches the currently programmed
password for the tag can be used.

Parameter: maskBank, maskStartBit, maskBitLength, mask
Type - UInt8, UInt16, UInt16, Byte[]
Description - These 4 fields specify a mask for filtering which tag is to be read. The
maskBank specifies the data bank to filter on (1 = EPC data, 2 = Tag Identifier data, or
3 = User data). The starting bit position within the data bank that the filter begins
from is specified by maskStartBit, the length of the mask in bits is specified by
maskBitLength, and the actual mask data is specified by the mask parameter.
As an example, if you wanted to mask based on the TID of a tag with TID value
E20034140117010112DD127E, maskBank = 2, maskStartBit = 0, maskBitLength =
96 (12 bytes * 8 bits/byte) and mask = [E2, 00, 34, 14, 01, 17, 01, 01, 12, DD, 12, 7E].

Parameter: dataBank, dataStartWord, dataWordLength, data
Type - UInt8, UInt16, UInt16, ref UInt16[]
Description - The parameter dataBank specifies the data bank to be read (0 =
Reserved data, 1 = EPC data, 2 = Tag Identifier data, 3 = User data), dataStartWord
specifies what word (2 bytes) boundary to start from, and dataWordLength specifies
the number of words to read. The data is returned as dataWordLength number of
elements filled in the data array. Note that the data array is allocated by the calling
program and must be at least dataWordLength elements long.
As an example, if we wanted to read words 2 and 3 of the TID specified above, we
would pass in dataBank=2, dataStartWord = 1 (the indexing is zero based) and
dataWordLength = 2. On a successful read, this method would return data = [3414,
0117].

Parameter: errorCode
Type - out Byte
Description - This returns the underlying error code detailing any problems. Typical
error codes are: 1 - the specified parameters are not supported, 2 - the password
specified was wrong or provided insufficient privileges (e.g., 0 when associated parts
of the tag are locked, and 3 - mask or data locations and/or lengths were not specified
correctly. These error codes correspond to the values documented in Annex I of the
EPCGlobal Gen2 Specification (Nov-2013, Version 2.0).

Return Value:

74 DCN-ST-00001-D 17June2019

This function will return RFIDStatus.OK if it is able to read and return the data requested for
the given tag. It will return RFIDStatus.FAILED otherwise and set the errorCode parameter
indicating the specific error condition.
Exception(s) thrown:
A System.TimeoutException will be thrown if the connection to the sensor cannot be
established or the module doesn't respond. A System.IndexOutOfRangeException will be
thrown if the "data" array was not allocated with at least a size of dataWordLength.

RFIDStatus WriteTagData(UInt32 accessPassword,

Byte maskBank, UInt16 maskStartBit, UInt16 maskBitLength, Byte[] mask,
Byte dataBank, UInt16 dataStartWord, UInt16 dataWordLength, UInt16[]
data,
out Byte errorCode)

Function:
This method writes the tag data to the specified tag data bank: 0 = Reserved data, 1 = EPC
data, 2 = Tag Identifier data (generally not writable), 3 = User data using the mask data
against the location specified by the maskBank, maskStartBit (offset into bank in number of
bits) with length specified by maskBitLength number of bits. DataWordLength number of
words will be written to the bank specified by the dataBank parameter starting at offset
dataStartWord words.
Parameters:
The parameters for this method are described in detail under the ReadTagData() method
above. The only exception is that the data[] array is passed in and is written to the specified
location (rather than read from that location in the description above).
Return Value:
This function will return RFIDStatus.OK if it is able to read and return the data requested for
the given tag. It will return RFIDStatus.FAILED otherwise. and set the errorCode parameter
indicating the specific error condition. These error codes are documented under the
ReadTagData/errorCode parameter section above.
Exception(s) thrown:
A System.TimeoutException will be thrown if the connection to the sensor cannot be
established or the module doesn't respond.

RFIDStatus LockTagData(UInt32 accessPassword,

Byte maskBank, UInt16 maskAddress, UInt16 maskLength, Byte[]
mask,
RFIDLockState killPwdLock, RFIDLockState accessPwdLock,
RFIDLockState epcLock, RFIDLockState userDataLock,
out Byte errorCode)

Function:

75 DCN-ST-00001-D 17June2019

This method locks, unlocks, or permanently locks or unlocks one or more data banks on the
tag. The tag to which the lock is to be applied can be selected using the mask data.
Parameters:

Parameter: accessPassword
Type - UInt32
Description - This specifies the password needed to lock the tag data.

Parameter: maskBank, maskStartBit, maskBitLength, mask
Type - UInt8, UInt16, UInt16, Byte[]
Description - These 4 fields specify a mask for filtering which tag is to be read. The
maskBank specifies the data bank to filter on (1 = EPC data, 2 = Tag Identifier data, or
3 = User data). The starting bit position within the data bank that the filter begins
from is specified by maskStartBit, the length of the mask in bits is specified by
maskBitLength, and the actual mask data is specified by the mask parameter.
As an example, if you wanted to lock the tag whose TID is
E20034140117010112DD127E, you would pass in maskBank = 2, maskStartBit = 0,
maskBitLength = 96 (12 bytes * 8 bits/byte) and mask = [E2, 00, 34, 14, 01, 17, 01, 01,
12, DD, 12, 7E].

Parameter: killPwdLock, accessPwdLock, epcLock, userDataLock
Type - RFIDLockState
Description - These parameters specify the type of locks that are to be applied to each
of the respective data items. Each of these lock parameters is the or (|) of the following
values:
• RFIDLocKState.NoChange = 0 -- The lock state of the associated bank is not be

changed.
• RFIDLocKState.Lock = 1 – The bank's lock bit is to be set.
• RFIDLockState.Unlock = 2 – The bank's lock bit is to be cleared
• RFIDLocKState.PermaLock = 4 – The bank's permalock bit is to be set.
• RFIDLockState.PermaUnlock = 8 – The bank's permalock bit is to be cleared.

RFIDStatus.FAILED is returned if Lock and Unlock are both specified or PermaLock
and PermaUnlock are both specified. Also, errorCode will be set to 0 (non-specified
error code under the EPCglobal Gen2 Specification.
The response of the tag to read and write commands when these various bits are set
of cleared can be found on page 89 of the EPCglobal Gen2 Specification (Nov-2013,
Version 2.0).

Parameter: errorCode
Type - out Byte
Description - This returns the underlying error code detailing any problems. Typical
error codes are: 1 - the specified parameters are not supported, 2 - the password

76 DCN-ST-00001-D 17June2019

specified was wrong or provided insufficient privileges (e.g., 0 when associated parts
of the tag are locked, and 3 - mask or data locations and/or lengths were not specified
correctly. These error codes correspond to the values documented in Annex I of the
EPCglobal Gen2 Specification (Nov-2013, Version 2.0).

Return Value:
This function will return RFIDStatus.OK if it is able to change the lock status of all of the
specified data banks. It will return RFIDStatus.FAILED otherwise. and set the errorCode
parameter indicating the specific error condition. In addition, none of the specified locks are
applied. The values for the returned error code are documented under the
ReadTagData/errorCode parameter section above.
Exception(s) thrown:
A System.TimeoutException will be thrown if the connection to the sensor cannot be
established or the module doesn't respond.

RFIDStatus KillTag(UInt32 killPassword,

Byte maskBank, UInt16 maskAddress, UInt16 maskLength, Byte[] mask,
out Byte errorCode)

Function:
This method kills the tag reference by the specified input mask.
Parameters:

Parameter: killPassword
Type - UInt32
Description - This parameter specifies the 32 bit kill password that must have been
programmed into the tag prior to making this call.

Parameter: maskBank, maskAddress, maskLength, mask
Type - Byte, UInt16, UInt16, Byte[]
Description - These parameters are used to select a specific tag (or tags) to be killed.
A description of these parameters an be found in the corresponding mask data section
of the ReadTagData method above.

Parameter: errorCode
Type - out Byte
Description - This returns the underlying error code detailing any problems. Typical
error codes are: 1 - the specified parameters are not supported, 2 - the password
specified was wrong or provided insufficient privileges (e.g., 0 when associated parts
of the tag are locked, and 3 - mask or data locations and/or lengths were not specified
correctly. These error codes correspond to the values documented in Annex I of the
EPCGlobal Gen2 Specification (Nov-2013, Version 2.0).

Return Value:

77 DCN-ST-00001-D 17June2019

This function will return RFIDStatus.OK if it is able to kill the specified tag. It will return
RFIDStatus.FAILED otherwise and return the extended error code in the errorCode
parameter as documented in the ReadTagData/ErrorCode parameter description above.
Exception(s) thrown:
A System.TimeoutException will be thrown if the connection to the sensor cannot be
established or the module doesn't respond.

Error Reporting

RFIDStatus GetErrorList(ref UInt32 NumberOfErrors, ref UInt32[] When,

ref Uint16[] Code, ref Int16[] DByte1, ref Int16[] DByte2)
Function:
This method returns the list of errors detected and recorded by the sensor.
Parameters:

Parameter: NumberOfErrors
Type - ref UInt32
Description - Output value returning the number of errors detected by the sensor.

Parameter: When
Type - ref UInt32[]
Description - An array of timestamps, in seconds, for when the error were detected
relative when the sensor was started (uptime).

Parameter: Code
Type - ref UInt16[]
Description - Output parameter returning an array of error codes for the detected
errors.

Parameter: DByte1, DByte2
Type - ref Byte[], ref Byte[]
Description - These two arrays return two additional bytes of data relevant to the
particular type of error that has been recorded.

Return Value:
This function will return RFIDStatus.OK if it is able to read and return the error list. It will
return RFIDStatus.FAILED otherwise.
Exception(s) thrown:
A System.TimeoutException will be thrown if the connection to the sensor cannot be
established or the module doesn't respond.
Additional Information:

78 DCN-ST-00001-D 17June2019

{When[i], Code[i], DByte1[i], DByte2[i]} form the error information for the nth reported
error.
The specific error codes are documented in the "SensArray Communications Protocol, Part I"
document.

RFIDStatus ClearErrorList()
Function:
This command clears the internal error list held by the sensor.
Return Value:
This function will return RFIDStatus.OK if it is able to clear the sensor's error list. It will
return RFIDStatus.FAILED otherwise.
Exception(s) thrown:
A System.TimeoutException will be thrown if the connection to the sensor cannot be
established or the module doesn't respond.
Additional Information:
The error list accumulates from the time the sensor starts or from the time the list is cleared.
To conserve space, up to 32 errors will be recorded. Once the list is full, it overwrites the
oldest error keeping the most recent 32 errors.

79 DCN-ST-00001-D 17June2019

Appendix C
Low-Level Communication API Interface Guide:

RFID.ReaderComm Namespace

public class RFIDReaderComm
Function:
This class encapsulates the low-level communications interface with the reader. In addition
to providing setup, resetting, and teardown of the TCP socket used to communicate with the
reader, it also packages up the binary protocol that is used in that communication.
Additional Information:
This class implements an on-demand approach to opening the TCP socket to establish
communication the reader. Consequently, you will not find explicit Connect() or
Disconnect() methods. You simply set up the IP address and port number for the socket, then
call any of the SendMessage() methods. If the socket has never been opened, or was closed
(due to a lost link, for example) the socket will be reopened. Once the application has finished
communicating with the reader, call Shutdown(), which closes the socket and dispose of the
object.

It is possible, however, to reuse this class by simply reinitializing it with a new set of IP
address/port number values. If these are different from what was previously set up, the
existing connection is closed, and a new one is automatically reestablished using these new
values.

This class packages up the various commands sent to the reader to simplify the work that
needs to be done at the application level. This packaging includes providing the correct set
of header and trailer bytes, providing the correct message length, inserting the command
code and data bytes, and finally calculating the checksum for the command. This packaged
byte sequence is then sent to the reader and waits for a response.

The received data is also processed. The header and trailer bytes are verified, the response
code is matched against the command code and the checksum is validated before the data
length is and the data byte stream are extracted and returned to the caller. If any of these
checks fails an Exception is thrown.

One additional comment in order. The RFID reader hardware is a standalone module
embedded in the reader. Consequently, there are two primary subsystems within the reader
that process commands. One handles the networking and top-level device management
commands. The second handles the RFID protocol and reader type commands. At the binary
protocol level, these commands are distinguished by having different header bytes. (Other
than a different pair of header bytes, the command structures are identical.) The commands
sent by the methods of this class need to be able to distinguish between these two

80 DCN-ST-00001-D 17June2019

subsystems. This is done through the ReaderSubsystem enumeration. This enumeration has
two values:

• ReaderSubsystem.RFID_Controller for commands targeted to the high-level controller
(header bytes 0xB9/0x9B),

• And, ReaderSubsystem.RFID_Module for commands handled by the internal reader
module (header bytes 0xA5/0x5A).

Specific details of the commands that are handled by the high-level controller are
documented in "SensArray Communications Protocol, Part I ". The specifics of the RF module's
binary protocol are documented in "SensArray Communications Protocol, Part II".

Communication Timeout Member Variables
Function:
The following variables can be used to set and get the timeout values (in milliseconds) for
the various phases of the communication process. The defaults for some of these may be a
bit long, and need to be tuned, but to date have been chosen to minimize timeouts in our test
lab. You will need to experiment with these values to determine whether shorter values will
work reliably in your network, or if you are getting too many timeouts, you may find you
need to increase these values a bit.
• Int32 ConnectionTimeout (get/set) - Default=15000 (15 sec.)

• Int32 DisconnectionTimeout (get/set) - Default=15000 (15 sec.)

• Int32 SendTimeout (get/set) - Default=5000 (5 sec.)

• Int32 ReceiveTimeout (get/set) - Default=15000 (15 sec.)

• Int32 ReceiveByteTimeout (get/set) - Default=15000 (15 sec.)

ctor RFIDReaderComm(String IPv4Address, UInt16 PortNumber)
Function:
Create an instance of the RFIDReaderComm class initialized with the IPv4 address and port
number passed in.
Parameters:

Parameter: IPv4Address
Type - String
Description - Input parameter specifying the IPv4 address that will be used to open
the socket for communicating with the reader.

Parameter: PortNumber
Type - UInt16

81 DCN-ST-00001-D 17June2019

Description - Input parameter specifying the TCP port number used when opening
the socket for communicating with the reader.

Return Value:
On a successful return this will return an instance of the RFIDReaderComm class.
Exception(s) thrown:
A System.FormatException will be thrown if the IP Address string is not a valid dot notation
IP address.

void Dispose()
Function:
The Dispose() method should be called prior to releasing any instance of the
RFIDReaderComm class so that any memory allocated as part of opening the underlying
socket resources can be freed properly.
Exception(s) thrown:
A System.TimeoutException will be thrown if the connection to the reader cannot be
established or the module doesn't respond.

IP Settings and Socket Setup and Teardown

void SetIPv4CommLink()
Function:
This method is used after the class has been created to change the IP address or the port
number that the class will use to set up the TCP socket.
Parameters:

Parameter: IPv4Address
Type - String
Description - Input parameter specifying the new IP address to assign to this
communication channel. This must be in the standard dotted notation, e.g.,
192.168.1.150.

Parameter: PortNumber
Type - UInt16
Description - Input parameter specifying the new TCP port number to be used when
opening the socket to communicate with the reader.

Return Value:
This method does not return a value.
Exception(s) thrown:
A System.FormatException will be thrown if the IP Address string is not a valid dot notation
IP address.
Additional Information:

82 DCN-ST-00001-D 17June2019

One side-effect of calling this method will be to close the existing socket and setup to reopen
the socket if either the IP address or the port number change from what is currently set.

void Shutdown()
Function:
Close and dispose of the underlying TCP socket.
Exception(s) thrown:
A System.TimeoutException will be thrown if the socket disconnect process doesn't
complete within the disconnect timeout period.

Methods for Sending Messages and Receiving Replies

Int32 SendMessage(ref Byte[] ResponseBuffer, Int32 MaxResponseLength,

ReaderSubsystem ModuleType, Byte MessageId,
Byte[] MessageData = null, Int32 MessageDataLength = 0)

Function:
Send a message to the reader expecting to receive a response. The ResponseBuffer
parameter will contain any data content returned from the reader. The specific message ids
and the data content of the sent messages are received replies are documented in the
Additional Information section of the top-level class description above.
Parameters:

Parameter: ResponseBuffer
Type - ref Byte[]
Description - Output parameter providing a buffer for the response data in the reply
to the message to be returned to the calling code.

Parameter: MaxResponseLength
Type - Int32
Description - Input specifying the maximum number of bytes to be returned in the
reply. This should be less than or equal to the number of elements in the
ResponseBuffer array.

Parameter: ModuleType
Type - ReaderSubsystem
Description - Input parameter which specifies the subsystem that will be handling the
command. The ReaderSubsystem usage is described in the Additional Information
section of the class overview.

Parameter: MessageId
Type - Byte

83 DCN-ST-00001-D 17June2019

Description - Input parameter which specifies the command that is to be sent to the
reader.

Parameter: Parameter Name
Type - String
Description - Description

Parameter: MessageData
Type - Byte[]
Description - Optional Input array comprising the data content of the message to be
sent to the reader. If there is no data content in the outgoing message, this can be
eliminated from the method call.

Parameter: MessageDataLength
Type - Int32
Description - Optional Input specifying the number of bytes in the outgoing message
data. If there is no data content to the message, this parameter can be eliminated from
the call.

Return Value:
Int32 value is returned with the length of the data content of the response.
Exception(s) thrown:
A System.TimeoutException will be thrown if the connection to the reader cannot be
established or the module doesn't respond.
Additional Information:
The actual binary data stream that is sent to the reader includes header and trailer bytes, the
message length and a checksum along with the command code and data. Similarly, on return,
the response has a similar structure. This method packages this information appropriately
and extracts the returned data removing the need to perform these operations from the
application level code.

void SendMessageNoReply(ReaderSubsystem ModuleType, Byte MessageId,

Byte[] MessageData = null, Int32 MessageDataLength = 0)
Function:
Send a message to the reader without expecting a reply.
Parameters:
See the Parameters section of the SendMessage() method above for the description of the
parameters to this method.
Return Value:
There is no return value from this method since we are sending the message expecting the
reply to be obtained using the DoReceive() method.
Exception(s) thrown:

84 DCN-ST-00001-D 17June2019

A System.TimeoutException will be thrown if the connection to the reader cannot be
established or the module doesn't respond.
Additional Information:
There are only a handful of commands where this method is appropriate. These include
rebooting the device and starting a continuous read cycle.

Int32 DoReceive(ref Byte[] ResponseBuffer, Int32 MaxResponseLength,

ReaderSubsystem ModuleType, Byte MessageId, Int16 AltMessageId = -1)
Function:
Wait for formatted binary protocol data replies to be sent from the reader. Return the
resulting data when a complete message reply has been received.
Parameters:
A description of the output parameter ResponseBuffer, and input parameters
MaxResponseLength and ModuleType can be found in the Parameters section of the
SendMessage() method above.

Parameter: MessageId
Type - Byte
Description - Input parameter passing in the id corresponding to the outgoing
message that corresponds to the expected reply.

Parameter: AltMessageId
Type - Int16
Description - Optional Input parameter passing in the id corresponding to a second
message type that might occur while receiving data. If this parameter is left out of call,
this method will only return messages corresponding to the primary id set by the
MessageId parameter. Other responses will throw an exception. The primary use of
this parameter is described in the Additional Information section below.

Return Value:
Int32 value is returned with the length of the data content of the response.
Exception(s) thrown:
A System.TimeoutException will be thrown if the connection to the reader cannot be
established or the module doesn't respond.
Additional Information:
The primary use for this method is to listen for tag data replies during continuous tag
inventory read cycles. The read cycle is initiated by issuing a Start Continuous Inventory
command. Tag data is read by receiving tag data in a continuous loop by calling DoReceive().
When the application is ready to stop the continuous inventory cycle, a Stop Continuous
Inventory command is issued while continuing to monitor responses using DoReceive() with
the primary MessageId being the one for tag reads and the alternative message id
(AltMessageId) being the one for the Stop Continuous Inventory command.

85 DCN-ST-00001-D 17June2019

Note that in this situation, both the Start Continuous Inventory command and the Stop
Continuous Inventory command would be sent using the SendMessageNoReply() method.

Int32 DoReceiveByte(ref Byte[] ResponseBuffer, Int32 MaxResponseLength)
Function:
Read a single byte from the incoming data stream.
Parameters:
A description of the output parameter ResponseBuffer, and input parameter
MaxResponseLength SendMessage() method above.
Return Value:
Int32 value is returned with the length of the data content of the response.
Exception(s) thrown:
A System.TimeoutException will be thrown if the connection to the reader cannot be
established or if no data comes in on the socket in the designated timeout period.
Additional Information:
There are two primary purposes for this command. One is to clear the data input buffer if
something glitches in the communication channel. The second is to provide direct access to
the full data stream for debugging purposes.

86 DCN-ST-00001-D 17June2019

Appendix D
Administrative Notification Listener Class API Interface Guide:

RFID.Notifications Namespace

public class SysMessageListener
Function:

This class is used to launch a TCP listener on the IP Address of a specific interface and designated port.
The listener waits for connections, reads a tag data stream from the connecting program and passes the
tag data messages through the registered callback to the application for processing.

OVERIVEW:

The SysMessageListener is a lightweight class that manages binary UDP Notification messages from
SensThys readers. Readers broadcast status messages on port 3984. Applications can listen for these
messages using this class.

Applications can listen for these messages and receive events corresponding to changes in reader state.
(e.g., 'started')

This model, since it is connectionless, has the benefit of scalability and does not require a central server
to maintain multiple open connections.

USING THE CLASS:

Briefly, one creates an instance of the class, specifying a listening port upon which to wait for UDP
broadcast messages.

At this point, delegates may be assigned to events supported by the class. This is currently limited to
system boot events but future extensions may include GPIO events, error notifications etc.

Note that the calling application needs to spawn a thread for the StartListening() call to run within since
StartListening() will block listening for incoming messages. Otherwise other events cannot be processed
including the registered RebootMessage handler.

Once the listener has begun listening, all interactions with the class are through the pre-assigned event
handlers.

Events are of the form:

public class SensThysListenerEventArgs : EventArgs
{

public string ClientIPAddress { get; set; }

87 DCN-ST-00001-D 17June2019

public DateTime EventTime { get; set; }
public int ErrorType { get; set; }
public string StrData { get; set; }

}

Where:

• ClientIPAddress is the address of the connecting reader.

• EventTime is when the event occured.

• ErrorType returns an integer representing the state of the system. (0=No error)

• StrData is any data payload associated with the event.

SysMessageListener(int Port = 3984)
Function:

Constructor for the SysMessageListener class

Parameters:

Parameter: Port

Type - int

Description - UDP Port number on which this class listens for system messages from the reader.
Leaving this parameter out will set this interface up to utilize the default UDP port number 3984.

Return Value:

Call to this constructor returns an initialized SysMessageListener object

Additional Information:

Currently, the SensArray readers do not support configuring the UDP port over which system
notification messages are delivered.

public event RebootEventHandler ReaderRebooted;
Function:

This is the interface used to register the event handler for when the reader reports reboot events. Your
event handler should have a signature that matches the RebootEvenHandler delegate interface shown
below.

Your event handler should be registered as follows:

88 DCN-ST-00001-D 17June2019

notificationListenerInstance.ReaderRebooted += myRebootHandler;

public delegate void RebootEventHandler(Object sender, SensThysListenerEventArgs e);

public bool listening;
Function:

This property can be queried to determine whether the code is currently listening for event messages
from the reader.

StartListening(void)
Function:

This method starts the listening and data callback process. StartListening() should be called when your
application is set up and is ready to accept and respond to system notifications.

Parameters:

None

Return Value:

No value is returned

Exception(s) thrown:

A ListenerCallbackNotSet exception is raised if this method is called prior to the ReaderRebooted event
handler being registered.

An AlreadyListening exception will be thrown if StartListening() is called more than once for the
associated SysMessageListener instance without calling StopListening(). If you are unsure of the state,
you can always call StopListening() independent of the current state of the listener, or you can check the
listening property.

Both of these exceptions are indicative of a code programming logic issue. However, if you want to catch
and handle these error explicitly in your code, the best way to do this is to derive your own class from
SysMessageListener and create a method to wrap StartListening() in a try/catch block. This method
would then be invoked from your thread setup call.

Additional Information:

This method starts listening for incoming UDP messages and invokes the event handler that has been
associated with the specified message. Note that this method currently blocks waiting to receive
messages, so it should be run within a thread if your application needs to do other processing while
listening for messages.

89 DCN-ST-00001-D 17June2019

StopListening(void)
Function:

Terminates the listening service.

Parameters:

None

Return Value:

No value is returned

Exception(s) thrown:

None

Example Program
using System;
using System.Threading;
using RFID.Notifications;

namespace SystemMessageApplication
{
 class Program
 {
 static void Main(string[] args)
 {
 // Create an instance of the Listener using the default port (3984)
 SysMessageListener sysMsgListener = new SysMessageListener();

 // Add appropriate delegates / event hooks
 sysMsgListener.ReaderRebooted += c_ReaderBooted;

 Console.WriteLine("Starting Listener...");

 new Thread(new ThreadStart(sysMsgListener.StartListening)).Start();

 Console.WriteLine("Listener Active.");

 while (true)
 {
 // Perform other work in Main here or run a GUI
 Thread.Sleep(1000);
 Console.WriteLine("Tick...");
 }

 //Main done.
 }

 //*************** Event Handlers ***************

 // A tagList payload has arrived at the Listener.
 static void c_ReaderBooted(Object sender, SensThysListenerEventArgs e)

90 DCN-ST-00001-D 17June2019

 {
 string strTagList = e.StrData;

 if (strTagList.Length > 0)
 {
 Console.WriteLine("**");
 Console.WriteLine("Reboot message Received from: {0}", e.ClientIPAddress);
 Console.Write(e.StrData);
 Console.WriteLine();
 }
 else
 {
 Console.WriteLine("No data in MessageReceived from {0}.", e.ClientIPAddress);
 }
 }
 }
}

91 DCN-ST-00001-D 17June2019

Appendix E
Unsupported/Unknown Commands

Some members of the SensThys reader family support capabilities that other family
members don’t.

The API methods that are not supported on different platforms can certainly be called from
your application code. However, if the method is not supported it will throw one of two
possible exceptions:

• ReaderReceivedNotImplementedResponse

• ReaderReceivedNoHardwareSupportResponse
In addition to the usual base class Exception fields (such as message) these add a command
code field that can be used to identify the specific underlying code corresponding to the API
method that was called.

Note that if your application needs to support different platforms, you can wrap the
functions that call the hardware specific methods in try/catch blocks, or you can always
query the reader type and make the call only when the hardware support is available.

	Version 1.5 Revision History
	Introduction
	What We Won’t Cover Here
	What Else Is Here?
	Language Support

	Getting Started
	Example 1: Hello World in C# Land
	Creating the new Visual Studio C# project
	Setting up the library reference needed to access the RFID.Reader namespace
	The Code
	Compiling and Testing Your Program

	Example 2: Reading Tags in Multi-Threaded C# Land
	Creating the new Visual Studio C# project
	Setting up the library reference needed to access the RFID.Reader namespace
	The Code
	Compiling and Testing Your Program

	Example 3: Hello World in Binary Protocol Land
	Creating the new Visual Studio C# project
	Setting up the library reference needed to access the RFID.ReaderComm namespace
	The Code
	Compiling and Testing Your Program

	Appendix A
	Example 1
	Example 2
	Example 3

	Appendix B
	API Interface Guide: RFID.Reader Namespace
	public class RFIDReader
	Communications setup and control
	constructor RFIDReader(String IPAddress, Uint16 PortNumber, RFID.Reader.TagReadHandler continuousTagReadHandler)
	constructor RFIDReader(String IPAddress, Uint16 PortNumber, RFID.Reader.TagReadHandler2 continuousTagReadHandler)
	constructor RFIDReader(String IPAddress, Uint16 PortNumber)
	void SetIPv4CommLink(String IPAddress, Uint16 PortNumber)
	SetTagReadCallback(RFID.Reader.TagReadHandler continuousTagReadHandler)
	SetTagReadCallback(RFID.Reader.TagReadHandler2 continuousTagReadHandler)
	void Shutdown()

	RF Module ID Queries
	RFIDStatus GetModuleHardwareId(ref String ModuleHwId)
	RFIDStatus GetModuleFirmwareId(ref String ModuleFwNumber)
	RFIDStatus GetModuleReaderId(ref String ReaderId)

	RF Setup and Query Methods
	RFIDStatus SetModulePowerSetting(Double ReadPower, Double WritePower)
	RFIDStatus SetAntennaPowerSetting(UInt32 AntennaId, Double ReadPower, Double WritePower)
	RFIDStatus GetModulePowerSetting(ref Double ReadPower, ref Double WritePower)
	RFIDStatus GetPowerSetting(ref Double[] ReadPower, ref Double[] WritePower)
	RFIDStatus GetPowerSetting(out int NumberOfAntennas, ref Double[] ReadPower, ref Double[] WritePower)
	RFIDStatus GetGen2Params(ref Byte[] Gen2Params)
	RFIDStatus SetGen2Params(Byte[] Gen2Params)
	RFIDStatus SetSessionParameter(Byte SessionParam)
	RFIDStatus GetSearchMode(out Byte SearchMode)
	RFIDStatus SetSearchMode(Byte SearchMode)
	RFIDStatus GetLinkParams(ref Byte LinkParams)
	RFIDStatus SetLinkParams(Byte LinkParams)
	RFIDStatus GetRegionSetting(out Byte RegionSetting)
	RFIDStatus GetRegionSetting(out String RegionSettingString)
	RFIDStatus GetModuleTemperature(ref Double ModuleTemperature)
	RFIDStatus GetConnectedAntennas(out Int32 AntennaCount, out Boolean[] AntennaIsConnected)

	Top-Level Sensor ID Queries
	RFIDStatus GetHardwareId(ref String HardwareId)
	RFIDStatus GetFirmwareId(ref String FirmwareId)
	RFIDStatus GetSerialNumber(ref String SerialNumber)
	RFIDStatus GetFirmwareBuild(out String FirmwareBuild)
	RFIDStatus SetReaderDateAndTime(String ReaderDateAndTime)
	RFIDStatus GetReaderDateAndTime(out String ReaderDateAndTime)
	RFIDStatus GetReaderConfig(out RFID.RFIDReader.ReaderConfig ReaderConfiguration)
	RFIDStatus SetReaderName(String ReaderName)
	RFIDStatus GetReaderName(out String ReaderName)
	RFIDStatus GetReaderType(out String ReaderType)

	Networking and Other Sensor-Level Configuration Functions
	RFIDStatus GetIpV4Info(ref Boolean UsingDHCP, ref Byte[] IPv4Address, ref Byte[] ipv4Netmask, ref Byte[] ipv4Gateway, ref Byte[] ipv4DNSServer, ref UInt16 SensorPort)
	RFIDStatus SetIpV4Info(Boolean UseDHCP, Byte[] IPv4Address, Byte[] ipv4Netmask, Byte[] ipv4Gateway, Byte[] ipv4DNSServer, UInt16 SensorPort)
	RFIDStatus GetHeartbeatConfig(ref Byte[] IPv4Address, ref UInt16 PortNumber, ref UInt32 Interval, ref UInt32 Count)
	RFIDStatus SetHeartbeatConfig(Byte[] IPv4Address, UInt16 PortNumber, UInt32 Interval, UInt32 Count)
	RFIDStatus GetLocatorSignalStatus(ref Boolean LocatorSignalActive)
	RFIDStatus SetLocatorSignalStatus(Boolean NewSignalStatus)
	RFIDStatus GetTempNotificationSetup(ref UInt16 notificationInterval, ref UInt16 alertInterval, ref Double warningThreshold, ref Double alertThreshold)
	RFIDStatus SetTempNotificationSetup(UInt16 notificationInterval, UInt16 alertInterval, Double warningThreshold, Double alertThreshold)

	Bluetooth and Wi-Fi Configuration Functions
	RFIDStatus GetWiFiConfiguration(out String SSID)
	RFIDStatus GetBluetoothConfiguration(out String Address)
	RFIDStatus SetWiFiConfiguration(String SSID, String Passcode)
	RFIDStatus SetBluetoothConfiguration(String Address, String PairingCode)

	Configuration Save and Restore
	RFIDStatus SaveCurrentConfiguration()
	RFIDStatus RestoreSavedConfiguration()
	RFIDStatus ResetToDefaultConfiguration()
	RFIDStatus Reboot()
	RFIDStatus GetBootloaderInfo(ref UInt16 bootloaderPort)
	RFIDStatus GetBootloaderInfo(out UInt16 bootloaderPort, out int versionMajor, out int versionMinor)

	GPIO and 24V Management Methods
	RFIDStatus GetGPIOSetup(ref Byte GPIOSetup)
	RFIDStatus SetGeneralPurposeOutputs(Byte NewGPOs)
	RFIDStatus Get24VStatus(ref Boolean V24State, ref Boolean V24OnAtStartup)
	RFIDStatus Set24VStatus(Boolean V24Active, Boolean V24ActiveOnStartup)

	Continuous Inventory Setup and Control
	RFIDStatus GetReadGapTimes(ref UInt16 ReadTime, ref UInt16 GapTime)
	RFIDStatus SetReadGapTimes(UInt16 ReadTime, UInt16 GapTime)
	RFIDStatus GetReadSequence(ref Byte[] AntennaSequence, ref Byte SequenceLength)
	RFIDStatus SetReadSequence(Byte[] AntennaSequence, Byte SequenceLength)
	RFIDStatus SetInventoryFilter(Byte maskBank, UInt16 maskStartBitAddress, UInt16 maskBitLength, Byte[] mask, Boolean makePersistent)
	RFIDStatus ClearInventoryFilter(Boolean makePersistent)
	RFIDStatus StartContinuousRead()
	RFIDStatus ReadNextTag(ref String EPC, ref Double RSSI, ref Byte AntennaNumber)
	RFIDStatus StopContinuousRead()
	RFIDStatus ResetReceiveTimeout()
	RFIDStatus ReadTag(ref String EPC, ref Double RSSI, ref Byte AntennaNumber)

	Tag Commissioning and Decommissioning
	RFIDStatus ReadTagData(UInt32 accessPassword, Byte maskBank, UInt16 maskStartBit, UInt16 maskBitLength, Byte[] mask, Byte dataBank, UInt16 dataStartWord, UInt16 dataWordLength, ref UInt16[] data, out Byte errorCode)
	RFIDStatus WriteTagData(UInt32 accessPassword, Byte maskBank, UInt16 maskStartBit, UInt16 maskBitLength, Byte[] mask, Byte dataBank, UInt16 dataStartWord, UInt16 dataWordLength, UInt16[] data, out Byte errorCode)
	RFIDStatus LockTagData(UInt32 accessPassword, Byte maskBank, UInt16 maskAddress, UInt16 maskLength, Byte[] mask, RFIDLockState killPwdLock, RFIDLockState accessPwdLock, RFIDLockState epcLock, RFIDLockState userDataLock, out Byte errorCode)
	RFIDStatus KillTag(UInt32 killPassword, Byte maskBank, UInt16 maskAddress, UInt16 maskLength, Byte[] mask, out Byte errorCode)

	Error Reporting
	RFIDStatus GetErrorList(ref UInt32 NumberOfErrors, ref UInt32[] When, ref Uint16[] Code, ref Int16[] DByte1, ref Int16[] DByte2)
	RFIDStatus ClearErrorList()

	Appendix C
	Low-Level Communication API Interface Guide: RFID.ReaderComm Namespace
	public class RFIDReaderComm
	Communication Timeout Member Variables
	ctor RFIDReaderComm(String IPv4Address, UInt16 PortNumber)
	void Dispose()

	IP Settings and Socket Setup and Teardown
	void SetIPv4CommLink()
	void Shutdown()

	Methods for Sending Messages and Receiving Replies
	Int32 SendMessage(ref Byte[] ResponseBuffer, Int32 MaxResponseLength, ReaderSubsystem ModuleType, Byte MessageId, Byte[] MessageData = null, Int32 MessageDataLength = 0)
	void SendMessageNoReply(ReaderSubsystem ModuleType, Byte MessageId, Byte[] MessageData = null, Int32 MessageDataLength = 0)
	Int32 DoReceive(ref Byte[] ResponseBuffer, Int32 MaxResponseLength, ReaderSubsystem ModuleType, Byte MessageId, Int16 AltMessageId = -1)
	Int32 DoReceiveByte(ref Byte[] ResponseBuffer, Int32 MaxResponseLength)

	Appendix D
	Administrative Notification Listener Class API Interface Guide: RFID.Notifications Namespace
	public class SysMessageListener
	SysMessageListener(int Port = 3984)
	StartListening(void)
	StopListening(void)
	Example Program

	Appendix E
	Unsupported/Unknown Commands

